Aihearkisto: Inertianavigointi

Geodesian alamäki läntisessä maailmassa &Kiina

Rakennus- ja infrasektorin käytännön ongelmat Suomessa

Tänäkin vuonna geodesian osaaminen noussut on jälleen noussut keskusteluihin monissa yhteyksissä, kun projektit eivät suju ihan niin kuin pitäisi. Meille kantautuu rakennus- ja infrasektorilla jatkuvaa nahinaa siitä, kuka on mitannut väärin kun virheistä aiheutuneille kustannuksille entistään maksajaa. Olemme olleet myös mukana selvittämässä isojen infrakohteiden virheitä. Nyt joulukuussa vastaan tuli vaihteeksi vastaan rakennussektorin kohde, jossa kyse on niinkin pienestä asiasta kuin koordinaatistojen ymmärtämisestä, mutta virheet ovat kulminoituneet yli sadan tuhannen euron lisäkustannuksiin tässä vaiheessa. Isoissa infraprojekteissa kerrannaisvaikutukset lasketaan miljoonissa.

Rakennusteollisuuden tuottama lisäarvo vuodessa vastaa noin 15 % bruttokansantuotteesta ja kiinteistöt – sekä nimenomaan rakennettu infra -muodostavan ison osan kansallisvarallisuudestamme. Sektori on siis merkittävä osa suomalaista yhteiskuntaa. Näin ollen alan ongelmakohtien selvittämisen luulisi kiinnostavan monia tahoja mukaan lukien koulutus.

Geodesian kriisi Yhdysvalloissa

Tässä mielessä on ollut mielenkiintoista seurata geodesian kriisin keskustelua USAssa. Geodesian osaajia on enää vähän, mutta tarpeet senkun kasvavat. Geodesia tarvitsee siis puhtaan geodesian sekä sitä soveltavien alojen kuten rakennusteollisuuden ongelmat ymmärtäviä osaajia kehittyäkseen. Tammikuussa 2022 julkaistu raportti Geodesy in Crisis kuvaa valaisevasti tilannetta esimerkiksi eri geodesiaa hyödyntävissä tutkimuslaitoksissa, joissa ei enää ole töissä edes geodesian tohtoreita. Myös USAn puolustusteollisuudessa ja puolustusvoimissa on sama tilanne. Kuvaavaa on, että puolustusvoimien alaisessa National Geospatial Intelligence Agencyssa on nykyään noin 2000 GIS-erikoisosaajaa, mutta vain kaksi geodesian tohtoria, joista toinen on lähellä eläkeikää.

Käytännössä rahoituksen alamäki näyttää alkaneen 1990-luvulla samaan aikaan, kun kylmä sota loppui. Nimenomaan kouluttajien puuttumisen takia USAssa on puolestaan paljon nuoria paikkatieto- ja GIS-insinöörejä, joiden oman ydinalan osaaminen on heikolla tieteellisellä ja käytännön osaamisen pohjalla. Samaan aikaan geodesiasta riippuvaiset geospatiaaliset alat ovat vain kasvaneet ja USAssa on muodostunut alla olevan kuvan mukainen kärjellään seisova pyramidi. Geodesia kannattaa yli 1000 miljardin USAn dollarin teollisuutta.

Tämä kriisi on havaittu ja tunnistettu kunnolla muutama vuosi sitten ja raportissa kuvataan muutoksia ja syitä tapahtumiin. Yksi perussyistä lienee geodesian muuttuminen näkymättömäksi – se on kaikkialla, mutta jopa alan sisällä on sen tunnistamisvaikeuksia. Suomessa on muuten samankaltainen tilanne.

Geodesian kukoistus Kiinassa

Samaan aikaan Kiinassa koko 2000-luku geodesiaan on panostettu valtavasti niin, että siellä on nykyään noin 150 oppilaitosta, joissa on geodesian ja kartoituksen perus- ja jatko-opinto-ohjelmia. Raportin tekijät arvioivat, että vuosittain ohjelmiin otetaan 9000–12500 opiskelijaa. Kiinan kasvaneen koulutustarjonnan myötä Kiina on nykyään geodesian koulutuksen ykkösmaa ja pelkästään Wuhanin yliopistossa ja tutkimuskeskuksissa on enemmän geodesian maisteriopiskelijoita ja tohtorikoulutettavia kuin koko USAssa. Koko maailmaa ajatellen Kiinassa on nykyään enemmän koulutettuja geodeetteja kuin muualla maailmassa yhteensä. Myös tutkimusjulkaisuissa Kiina on mennyt ohitse sekä määrällisesti että laadullisesti ja nyt lisääntyy vain kiinaksi kirjoitettujen julkaisujen määrä. Kiinan virallisen politiikan mukaan tieteiden saavutuksia ei halutakaan enää jakaa kaikkien kanssa, vaan ne pidetään kielimuurin takana. Kyseessä ovat näet myös kaupalliset edut. Tämän tekstin kirjoittaja huomasi saman taktiikan jo vuosia sitten seuratessaan kiinalaisten julkaisuja oman GNSS-inertia-laskennan kehittämisestä. Aluksi projektia ja sen kehittämistä esiteltiin, mutta sitten julkaisut kansainvälisillä alustoilla loppuivat vaikka projekti jatkui.

Valtavan rahoitus- ja kehitystyön tuloksena geodesian rahoitus Kiinan eri tutkimuslaitoksissa ja yliopistoissa on huomattavasti paremmalla tasolla kuin muualla maailmassa. Koska osaajia on, niin valtiolla on varaa rahoittaa useampia saman ongelmakentän parissa työskenteleviä tutkimusryhmiä, jolloin todennäköisyys ratkaisujen löytämiseen on tietysti suurempi. Raportin kirjoittajien mukaan esimerkiksi BeiDou (Compass) on vähintään yhtä hyvä järjestelmä kuin GPS ja osin se on jopa parempi. Sillä on nykyään myös maailmanlaajuisesti suurempi määrä käyttäjiä kuin GPS:llä. Geodesian laaja osaaminen on mahdollistanut myös esimerkiksi Kiinan kuuprojektin, autonomisten ajoneuvojen kehittämisen sekä vaativat ja tarkkuutta vaativat isot infrastruktuuriprojektit. Kaukana ovat ajat, jolloin Suomen 1950-luvulla siteeratuin tiedemies V. A. Heiskanen koulutti salaa geodesiaa myös NASAn kuuprojektin tiedemiehille Ohion Kolumbuksessa.

Raportissa viitataan myös Eurooppaan ja todetaan geodesian koulutuksen olevan täällä paremmassa tilassa. Käytännössä viitataan vain tiettyihin maihin kuten Saksaan ja samalla todetaan Saksankin osaamisen nojautuvan tänä päivänä hyvin paljon Kiinaan. Esimerkiksi Saksan geotieteiden tutkimuskeskuksen avaruusgeodesian osastolla noin puolet tohtoreista on saanut koulutuksensa Kiinassa.

Suomen tilanne

Millainen tilanne on sitten Suomessa vuoden 2023 kynnyksellä? Geodesian kriisi havaittiin täällä jo varhain, joten meillä on toteutettu korjaavia toimenpiteitä. Markku Poutanen kirjoitti esimerkiksi seuraavasti Maankäytön numerossa 3/2007:

Yhtenä syynä lienee se, että geodesian menetelmiä ja geodeettisten havaintoverkkojen ja pysyvien, stabiilien vertausjärjestelmien merkitystä ei tunneta. Tutkimuksen lisäksi yhteiskunnallisten tarpeiden huomioonottaminen ja geodeettisten menetelmien tunnetuksi tekeminen ovat lähivuosien suuria haasteita.

sekä

Viime aikojen muotina on ollut koko geodesia-sanan hävittäminen niin alan laitosten kuin geodesian opetuksen nimistä. Miksi? Tilalle ovat tulleet sellaiset mitään tarkoittamattomat sanahirviöt kuin geomatiikka. Kun alan opiskelijat on menetetty samassa myllerryksessä, on koko tarpeeton geodesian opetuskin voitu lakkauttaa. Mistä löytyvät tulevaisuuden osaajat ja kuka kykenee jatkossa luomaan ja ylläpitämään koordinaattijärjestelmiä?

Päättäjiin kohdistetun tiedottamisen myötä Suomessa on löytynyt rahoitusta muun muassa geodeettisen perusinfrastruktuurin ylläpitämiseen ja uudistamiseen. Tietoisuuden kohottamiseksi on julkaistu myös visio ja strategia geodesialle Suomessa 2017-2026, jossa käydään myös läpi heikkouksia mukaan lukien alan koulutus Suomessa. Aalto-yliopistossa on saatu pidettyä geodesian apulaisprofessori sekä työelämäprofessori. Kaikeksi onneksi myös geodesia-nimike on palautettu arvoonsa, sillä maailmanlaajuinen geomatiikkaseikkailu ei tehnyt geodesialle kuin hallaa (tätä käsitellään myös USAn raportissa).

Suomen geodeettisen vision ja strategian päämäärien viimeinen kohta on ”metrologisesti luotettavat ja tarkat koordinaatti-, korkeus- ja painovoimajärjestelmät tarjoavat helposti saatavilla olevat paikkatiedot kaikkien käytössä olevien sovellusten tarpeisiin”. Koko raportti käsittelee siis pääosin ylätason rakenteita ja toimenpiteitä, kun taas sovellettu geodesia eri aloilla ei oikeastaan esiinny siinä laisinkaan. Geodesian infrastruktuuri tuotetaan siis kaikkien sovellusten tarpeisiin, mitä oikeastaan heijastaa kuvan 1 pyramidi, ja pohjalta ylöspäin siirryttäessä sen nimi näytetään muutettavan meillä paikkatiedoksi.

Sovellusaloja ja tekijöitä on paljon, mutta varsinaista geodesian osaamista on muilla aloilla tyypillisesti vähän. Teoriassa koulutus ja tutkimus heijastavat tietämystä muille aloille, mutta koska geodesian koulutus on sen ydinalalla heikoilla kantamilla, niin ei ole paljoakaan mitä heijastaa. Tai se mitä on, suuntautuu lähinnä avaruusgeodesiaan. Valitettavasti toinen tuore strategia, Kansallinen paikkatietostrategia 2022-2025 ei vastaa millään tavalla myöskään osaamisen haasteisiin käytännössä. On kyllä keksitty toistaa aikakautemme mantraa osaajien maahantuonnista ulkomailta:

”Maahamme on saatava ulkomaisia alan osaajia ja lisättävä muiden alojen asiantuntijoiden paikkatieto-osaamista. Paikkatieto-alan osaajien palkkauksen on oltava tasolla, joka motivoi työnhakijoita tilanteessa, jossa IT-osaajista on pulaa.”

No, tiedämme missä maassa ne oikeat osaajat nykyään ovat, joten ilmeisesti rekrytointi Kiinasta käy kuumana.

Lopuksi

Toimiva geodeettinen infrastruktuuri ei siis riitä siihen, että esimerkiksi rakennusalalla saavutettaisiin parempaa laatua ja vältyttäisiin isoilta virheiltä. Geodesian tietotaidon pitäisi heijastua paremmin sekä kartoittajien ja maanmittaajien koulutukseen, jotta he osaisivat soveltaa sitä onnistuneesti käytännön projekteissa – monet toimivat rakennusalalla. Toisaalta käytännön tason toimijoiden osaaminen ja ymmärrys ei riitä, koska geodeettinen osaaminen on nykyään olematonta myös ylätasoillä – sekä tilaaja –että suunnitteluorganisaatioissa. Esimerkiksi merkittäviä mittausprojekteja tilaavilla ja hallinnoivilla yksityisillä ja julkisilla organisaatioilla ei tyypillisesti ole yhtään geodesian osaajaa talossa. GIS-analyytikolla ei ole riittävää osaamista ja IT-ammattilainen ei normaalisti tiedä mittauksesta mitään. Saatava lopputulos on usein sen mukaista. Koska ongelmatilanteita ja rahallisia korvauksia ei ratkota julkisuudessa, niin tietoisuus ongelmista ei leviä. Tilinpidossa kustannukset jakautuvat eri kustannuspaikoille, joten ongelmien rahallista vuosikustannusta Suomessa ei tiedä kukaan.

Nahina jatkuu. Näihin hiukan synkkiin ajatuksiin päätämme vuoden 2022 kirjoitukset. Tästä huolimatta toivotamme kaikille lukijoillemme Valoisaa Uutta Vuotta 2023!

Uusi RIEGL VMX-2HA liikkuva laserskannausjärjestelmä

Kevään tullen on aika tutustua hieman tarkemmin RIEGL VMX- mobiiliskannerisarjan, järjestyksessä jo neljänteen uutuuteen, tuotemerkinnältään RIEGL VMX-2HA. VMX-sarjan ensimmäinen kompakti mobiililaitteisto VMX-250 julkaistiin muuten jo tasan 10 vuotta sitten. Sen jälkeen RIEGL VMX-sarjan kehitys jatkui saman konseptin mukaan kehitetyillä VMX-450 ja VMX-1HA malleilla.

RIEGL VMX-2HA on kokonaan uuden konseptin laitteisto, jossa kiteytyy laitevalmistajan 40 vuoden kokemus laserskannaustekniikan johtavana kehittäjänä samoin kuin myös uran uurtajan pitkä kokemus mobiililaserskannauksessa eli liikkuvassa kartoituksessa.

RIEGL VMX-2HA:ssa on on panostettu erityisesti kameroihin, joita on mahdollista liittää järjestelmään peräti 9 kappaletta 10 GigE -rajapinnoilla. Riegl tarjoaa kameroiksi kuvassa näkyviä 5, 9 ja/tai 12 Mpx kameroita, mutta laitteistoa hankkiessa voi aivan yhtä hyvin tyytyä vähäisempään resoluution valitsemalla esim. Ladybug5+ kameran yleiskuvasta varten. Vastaavasti järjestelmään voi liittää myös isompiakin kameroita, sillä liitäntöjen kuituoptiikka mahdollistaa nopean tiedonsiirron.

Rieglin uudet teollisuuskamerat ovat kennoiltaan herkempiä, mikä mahdollistaa paremman kuvanlaadun huonoissa valaistusolosuhteissa sekä nopeammat ajonopeudet kuvauksen aikana. Suhteessa laserskannaukseen kuvaus on näet monasti työtä rajoittava tekijä, sillä skannata voidaan mihin vuorokaudenaikaan tahansa vaikkapa täydellisessä pimeydessä. Valokuvaus vaatii aina kohteen valaistuksen jollain keinoin.

Yllä olevassa kuvassa on esimerkki takakameran resoluutiosta – pikselikoko kahden metrin etäisyydelta on 1,4 mm ja näitä kuvia voi ottaa useamman sekunnissa.

Itse skannausjärjestelmä on taattua Rieglin laatua sisältäen Rieglin uusimmat skannerit ja yhden kaupallisten markkinoiden parhaimmista GPS-inertianavigointijärjestelmistä.
Inertianavigointitekniikan hyödyntämisestä johtuen parempi laserskannaus- eli mittaustulos saadaan reippaalla ajovauhdilla.

Aineistojen prosessointi georeferointiin asti tehdään Rieglin omilla ohjelmilla, joihin on kehitetty hyvät rutiinit kahden keskenään kalibroidun skannerin aineiston prosessointiin. Luokittelua, vektorointia, mallinnusta ja koodausta voidaan tämän jälkeen tehdä esim. TerraSolidin ohjelmistoilla.

Tiesitkö muuten, että Rieglin VMX-mobiilikartoitusjärjestelmillä on mitattu jo muutama miljoona tiekilometri maailmalla? Isoimmilla asiakkailla esim. Kiinassa ja Yhdysvalloissa on jo useampia laite käytössään ja näillä mitataan kovaa vauhtia esimerkiksi robottiautojen tarvitsemia HD-karttoja. HD-karttaa varten tehtävä aineiston prosessointi eroaa suunnittelua varten tehtävästä vektoroinnista, sillä päämääränä ovat koneluettavat tiedostot.

Toivomme saavamme ensimmäisen RIEGL VMX-2HA laitteiston pian Suomeen, mutta sitä ennen tervetuloa meille tutustumaan aineistoihin ja kuulemaan lisää yksityiskohtia.

PS. Juuri tällaisille laitteistoille ja mittaustarkkuuksille tarvitsemme sekä valtakunnallista että kaupunkien ja kuntien ylläpitämää tarkkaa korkeus- ja tasokoordinaatisto runkopisteistöä, joiden rapistumisesta olemme eri yhteyksissä valitelleet koko talven.

Training: geodetic monitoring using mobile laser scanning

During their training, the STARA surveyors have been facing increasingly more difficult projects as they progress on their learning path. Typically urban environments have more challenges than working on open roads, so basically they have practiced to deliver projects in their normal working environment. There are e.g. a few hundred kilometers of tunnels in Helsinki ( and who knows, maybe a 100 km tunnel between Helsinki and Tallinn in the future) and the second longest tunnel in the world, the Päijänne water tunnel also ends here.

Tunnels mean non-existing GNSS and have been a good exercise to geodetic monitoring of support walls. Founded on a hilly terrain, Helsinki has many old and new support walls and structures that require monitoring in case of deformation and other changes.

In the center of Helsinki, these walls are often located in urban canyons, but they can be seen from the road and therefore they can be measured also from a moving vehicle. The urban canyons create almost tunnel like experiences as far as GNSS is concerned which is why measuring tunnels is a good practice for this type of monitoring.

When geodetic monitoring is discussed, the accuracy requirements determine the methods and the used tools. With careful planning and right equiment, the RIEGL VMX-1HA, our calculations show that we can detect deformations as small as 5 mm on these uneven stone, which is adequate for this purpose.

During the training, The STARA surveyors have scanned 3 different support walls and are now carefully processing the data to suit the purposes. They will create the zero documentation which will be used again in 6 months time as a comparison for the future scans.

Below you can see screenshots from the raw data – the georeferenced mobile lidar data in different locations around Helsinki. The whole street with its infrastructure can be modeled from this data as well whenever needed.

Koulutus, osa nn: tunnelit

Koulutuksissamme käsittelemme monenlaisia mittauskohteita asiakkaiden toiveiden mukaan. Näin ollen kaupungeissa, joissa on paljon tunneleita, täytyy myös osata mitata tunneleita suunnittelun- ja rakentamisen vaatimalla tarkkuuvaatimustasolla. Tehtävään sopivalla laitteistolla kuten Riegl VMX-1HA:lla tunneleita voidaan mitata myös liikkuvasti.

Näin ollen tuoreimmassa koulutuksessamme on harjoiteltu eri tyyppisten, lyhyiden ja pitkien, vanhojen ja uusien, kevyen liikenteen ja ajotunnelien mittausta. Pisin mittaamamme tunneli Helsingissä on 2 km pituinen Vuosaaren satamatunneli. Kylmäharjoittelumateriaalina voidaan käyttää myös peitteisiä kadunpätkiä, jotka korkeista rakennuksista ja puista johtuen ovat käytännöllisesti tunneleita GNSS-mittauksen osalta. Tällaisia katuosuuksia Helsingissä riittää!

Alla muutama kuva mitatuista aineistoista Vuosaaresta ja Kalasatamasta.

2 km kaksoistunnelia Vuosaaressa.
Paksu profiili, jossa näkyy tunneliin asennettuja laitteita.
Tunnelinsuu.
Kalastaman uuden keskuksen rakenteita Kulosaaren sillalla.
Itäväylällä mennään kohti Kalasatamaa ja keskustaa.
Portaali Itäväylällä.

Venelaserskannauksen tuloksia

Koulutuksen aikana veneestä tehty laserskannaus Riegl VMX-1HA-laserskannausjärjestelmällä osoittautui mielenkiintoiseksi monella tavalla, joten julkaisemme hiukan kuvia aineistosta. Koulutuksessa olevat mittaajat alkavat tässä vaiheessa olla jo hyvällä tasolla tekemisessä.

Aineistoon yhdistyy osin myös autosta maasta käsin tehty mobiililaserskannaus, joten näissä paikoissa pistepilvi on myös hyvin kattava ja rakenteet on mitattu kaikilta puolilta. Mittausaineiston tarkkuus on senttimetritasolla eli myös veneestä tehty mittaus täyttää suunnitteluaineiston pohjana käytettyjen aineistojen tarkkuusvaatimukset.

Lopputuloksessa ihailimme sitä, miten hyvin maalta ja merelta skannatut istuvat yhteen ilman mitään sen suurempia säätöjä.

Koska meren pinta on normaalia matalammalla, saimme mitattua paljon yleensä veden alla olevia rakenteita kuten pitkät pätkät kaijojen paaluja. Alla olevissa kahdessa kuvassa kaijan yläpinnan pistepilvi on piilotettu, jolloin näemme sen alla olevia paaluja. Kahden ristikkäisen skannerin järjestelmällä paaluja saatiin mitattu syvältä kaijan alta ja jopa rakenteen takaseinää näkyy.

Rannalta käsin mitattu aineisto istuu tosiaan erinomaisesti veneestä mitattuun aineistoon

Samalla kertaa tuli myös mitattua Viking Xpress -laivan toinen kylki. Pienen odottelun jälkeen laiva lähti Tallinnaan, jolloin saimme mitattua terminaalin merenpuoleiset rakenteet.

Tästä on hyvä jatkaa!

UAV/droonilaserskannauksen virheistä

Hienoa kun kissa nostetaan pyödälle eli tässä tapauksessa keskustellaan miehittämättömistä lennokeista eli drooneista tehtävästä laserskannauksesta. Ja kuvauksesta myös. Järjestelmien ja siten mittaustulosten välillä on suuria eroja.

Otsikolla ”Detox: Not every UAV lidar sensor is right for your project” varustetussa artikkelissa kerrotaan viime kuussa ILMF-konferenssissa pidetystä esityksestä, jossa Helimap System SA -niminen yritys oli vertaillut omiin tarkoituksiinsa kuvausjärjestelmää ja kahta Lidar-järjestelmää. Näistä jälkimmäinen sisälsi Riegl VQ-480-skannerin, jonka kevyemmät ja nopeammat VUX-sarjan skannerit ovat nykyään jo käytännössä syrjäyttäneet. Jopa tämä vanhempi laite päihitti tuotantotehokkuudessaan ja tarkkuudessaan kevyesti muut verrattavat järjestelmät.

On hienoa, jos käyttäjäkunta alkaa vihdoin keskustella laitteistojen eroista, jottei jokaisen tarvitse tehdä samoja hankintavirheitä. Autonomisten ajoneuvojen kiihkeän kehityksen myötä markkinoille purskahtaa koko ajan lisää ”Lidareita”, joita joita halutaan myös edullisina käyttää drone-kartoituksen tarpeisiin. Auton törmäyksenestoanturi ja mittauslaite ovat käytännössä varsin erilaisia laitteita, jolloin suuri osa noista uutuuksista ei sovi mittaustehtäviin. Edelläkävijät ovat tämän jo omissa kokeiluissaan huomanneet, mutta nyt suurempi yleisö seuraa perässä samoin testein.

Kirjoitus päättyy pohdintaan pääomakustannuksista eli kalliimmasta hankintahinnasta verrattuna siihen työmäärään, jota joudutaan uhraamaan heikkojen järjestelmien aineistoihin, jotka eivät välttämättä kelpaa edes työn vaatimuksiin. Huono mittaustulos maksaa.

Tämän vuoksi lähtökohtamme laitteitojen myyntidialogeissa on aina vaadittu työn tarkkuus. Ja juuri käytännön mittausten tarkkuuksien verifioinnissa meillä on pitkä kokemus – kättä on väännetty myös monen laitevalmistajan kanssa hyvien lopputulosten saavuttamiseksi.

Kerrataanpa vielä lopuksi mistä kaikenlaisen mobiilin eli liikkuvan mittausjärjestelmän virhebudjetti koostuu. Karkeasti ottaen

  • Komponttivirheet – IMU, laserskanneri, GNSS, boresight (IMUn ja skannerin keskinäinen kulman virhe) ,lever arms (komponenttien sijainti ja offsetit toisiinsa nähden) yms. Mukaanlukien myös mittausalustan tuottamat virheet.
  • Laiteintegrointi eli miten järjestelmä on rakennettu
  • Mittauksen suunnittelun/toteutuksen virheet
  • Käyttäjän muut virheet

Esimerkkinä alustaa myöten suunnitellusta UAV-kartoitusjärjestelmä kelpaa tarkastella Riegl RiCopteria.

Loppujen lopuksi kokonaisvirhe – mittauksen epävarmuus ilmoitetaan vain kohtisuoraan (kovaan) pintaan nähden hyvissä GNSS-olosuhteissa ja oletuksena on osaava käyttäjä. Tästä syystä todellinen koetinkivi kaikille järjestelmille ovat kenttäolosuhteet eli reaalimaailma.

Huojuvia trajektoreja ja muita kertomuksia

Viikko on kulunut jälleen rattoisasti mobiili- ja staattisia skannausaineistoja työstäessä, kouluttaessa ja seminaarissa. Perjantaina istuimme jälleen hetken yhdessä keskustellen viikon tapahtumista ja aihepiireistä, jolloin nousi esille eri tavalla tuotettujen spatiaalisten aineistojen yhteensovittaminen – kuulemma suuri ongelma monissa organisaatioissa. No aihepiiriä on työstetty jo useita vuosikymmeniä, joten on se vallan ihmeellistä ettei tämän enempää edistymistä ole tapahtunut. Aineistot eivät vaan edelleenkään sovi yhteen.

Uutena terminä kuulimme myös käsitteen ”huojuvat trajektorit” – mikä on esittelijän mukaan kuvaus tyypillisestä mobiilaserkeilausaineistosta ja meistä vallan mainio nimitys. Näitä huojuvatrajektorisia mobiilipistepilviaineistoja yhdistellään sitten ilmalaserkeilausaineistoihin, joiden avulla huojuvaa trajektoria laitetaan kuriin. Vau!

Trajektori on mobiilimittauslaitteiston liikerata asentoineen ja se näkyy esimerkkikuvassa punaisella. Trajektori lasketaan tyypillisesti IMUn ja GNSS-havaintojen perusteella; myöhemmin sitä voidaan myös tarkentaa laseraineistolla.

Vaikka ajatus tuntuu aluksi varsin absurdilta – mobiililaserskannausaineisto on parhaimmillaan huomattavasti tarkempaa kuin ilmalaserkeilausaineisto – niin tarkemmin asiaa ajatellessa on tunnustettava se tosiasia, että valtaosalla maailman kirjavista mobiililaserskannausjärjestelmistä tuotetaan jo lähtökohtaisesti aika kuraa. Jos järjestelmän tekninen taso on siedettävä, niin käyttäjien osaamattomuus tuhoaa laadukkaankin järjestelmän aineiston. Lopputulos aineistojen mittauksellisen laadun suhteen on siis aivan Gaussin käyrän mukainen. Huipulla ei ole tungosta.

Tähän tulokseen pääsee varsin helposti seuraamalla lukuisten kartoitusalan startupyritysten kertomuksia tuotantoprosessistaan. Tuotetaan millin tai sentintarkkaa aineistoa useimmiten robottiautojen vaatimaksi lähtöaineistoksi – niin kutsutuksi High Definition -kartaksi. Tässä vaiheessa on useimmiten paras olla kysymättä, onko mittausten metriluku lähellä oikeaa. Kateellisena voimme vain seurata sivusta, kuinka helppoa millintarkan aineiston tuottaminen on kaikennäköisillä räppänöille. Sehän on vaan, öhöm, Big Datan prosessointia.

Startupmaailman ulkopuolella on paljon vaikeampaa tuottaa näin supertarkkaa aineistoa, sillä sopimusten mukaan aineiston tuottaja on oikeudellisesti vastuusta aineiston laadusta ja joutuu siis oikeasti kaivamaan rahapussia jos tulos ei vastaa tilattua. Koska Suomen mobiililaserskannausmarkkinat on viimeisen 10 vuoden aikana kustu huonoilla aineistoilla, niin mekin olemme lähteneet useaan projektiin mukaan periaatteella, että saamme rahat vain jos aineisto vastaa laatuvaatimuksia. Niin monta kertaa tilaajien käsiin on jo päätynyt luokatonta dataa! Kertaakaan maksu ei muuten ole jäänyt saamatta.

Huojuvat trajektorit voivat syntyä monestakin syystä, mutta ensimmäisenä tulee mieleen järjestelmän inertianavigointijärjestelmä. Se kaikessa mobiilimittauksessa tärkeä komponentti, jonka hankinnassa halutaan säästää. Inertiajärjestelmien hinnoittelupolitiikka on hyvin yksinkertainen – mitä parempi laite sen kalliimpi sen on.

Toinen, se ikävämpi syy, on käyttäjien osaamattomuus. Hyvän tuloksen saaminen edellyttää hyvää mittausprojektin suunnittelua, toteutusta ja prosessointia. Niin, siis geodesian osaamista.

Laadukkaassa aineistossa mobiililasermittausen trajektori ei siis huoju holtittomasti niin, että se pitää laittaa kuriin kontrollipisteillä. Tämä prosessi on sitäpaitsi täysin hyödytön sillä kontrollipisteiden välillä aineisto on taas missä sattuu. Me puhumme tässä yhteydessä makkarasta, jonka pursuaa sinne tänne.

Laadullisesti hyvä mobiililaserskannausaineisto on jo sisäisesti niin jämäkästi paikoillaan, että se voidaan muutamalla pisteellä kalibroida paikoilleen korkeuden ja tason suhteen paikalliseen järjestelmään. Tällainen aineisto paljastaa jopa armotta vaikkapa geoidimallin virheet – sekin on vain approksimaatio, jossa on omat virheensä.

Laadullisesti hyvä aineisto kelpaa erinomaisesti suunnittelun lähtöaineistoksi ja vaikkapa tarkentamaan ilmalaserkeilausaineistoa aineistojen yhteensovittamisella. Kuten me teimme esimerkiksi Hankiviki-projektissa vuonna 2014 erinomaisin tuloksin.

Laadukas mobiililaserkeilausaineisto paljastaa myös takymetri- ja GPS-mittausten virheet. Varsinkin kokemattomien mittamiesten on vaikea uskoa miten paljon pielessä mittaukset välillä ovat.

Laadukas aineisto tuotetaan laadukkaalla järjestelmällä. Hyvä tapa erottaa jyvät akanoista on tehdä koemittaus peitteisellä alueella. Avoimella alueella erot laadussa voivat olla pienempia. mutta GNSS:än heikentyessä trajektorit alkavat huojua.

Reaaliaikaista mittausta UAV:llä

Suomen ensimmäisen Riegl RiCopterin käyttöönotto alkaa olla käsillä ja lennokkiskannauspalvelua saa jatkossa Vitomittaus Oy:n kautta. Tuodaanpa saman tien esille yksi vähemmän mainittu ominaisuus tästä tehopaketista: aineistojen reaaliaikainen lataaminen skannerista etäkäyttäjän koneeseen mittauksen vielä jatkuessa. Georeferoinnin laskentaan käytetään tällöin luonnollisesti reaaliaikaista trajektoria.

Heti käytössä olevan mittatiedon saatavuus tuo luonnollisesti uusia sovelluskenttiä skannerin käytölle. Näitä ovat muun muassa pelastusoperaatiot (search and rescue) sekä nopeasti muuttuvien ympäristöjen kartoitus.

RIEGL RiCopter taitolentönäytöksessä.

RIEGL RiCopter taitolentönäytöksessä.

Normaaleissa kartoitusoperaatiossa käytetään edelleenkin tyypillisesti jälkilaskentaa, sillä näin saadaan tarkempi trajektori ja sitä myöten myös tarkempi lopputulos mittausten osalta. Aihepiiriä tuntemattomille mainittakoon, että Rieglin järjestelmillä tuotetaan tyypillisesti suunnittelun lähtöaineistoksi kelpaavia mittaustarkkuuksia lasermittauksen sisäisen tarkkuuden ollessa alle 1 cm ja aineiston absoluuttisen tarkkuuden muutama sentti.

Tutustu Riegl VUX-1UAV-skannerin ominaisuuksiin ja ota yhteyttä lisätietojen saamiseksi! Riegl RiCOPTER VUX-1UAV-skannerin kanssa on näytteillä osastollamme A7 Paikkatietomarkkinoilla 8.-9. marraskuuta.

Älä unohda myöskään tuoretta uutuutta Riegl miniVUX-skanneria. Se on suunnattu lennokkiskannauksen ensiaskeleeksi laajemmille käyttäjäpiireille. Kuten VUX-skannerien kohdalla, liikkeelle voi lähteä pelkällä skannerihankinnalla ja rakentaa järjestelmänsä itse, mutta hyvä lopputulos vaatii tietotaitoa. Toinen vaihtoehto on hankkia lennokkiin asennusvalmis ja kalibroitu miniVUX-SYS-järjestelmä, joka sisältää myös GNSS-IMU-komponentit.

minivux-data

Riegl miniVUXilla skannattua aineistoa

Skannerinhankinta on myös taitolaji, joten kerro meille tavoitteesi, jolloin me voimme kertoa millainen skanneri sopii tarkoitukseesi.

Laserskannerilla on väliä!

Malesian trooppisista metsistä saapuu video, jossa esitellään digitaalisen maastomallin tekemistä RIeglin VUX-skannerin tuottamasta laserskannausaineistosta. Tässä tapauksessa VUX on laitettu Riegl RiCopter UAV-kopterin kyytiin, mutta sehän sopii erinomaisesti myös helikopteriin tai maassa liikkuvaan mobiilimittausjärjestelmään.

Meillä on mitattuna vastaavia metsäaineistoja Suomesta, mutta tämä kyseinen kohde taitaa olla vielä tiheämpi kuin meidän vastaavamme. Tai tiedä häntä, Suomen pöpeliköt ovat pahimmallaan aika hurjia 😀

metsa

Aineiston käsittelyä esittelevässä videossa on leikattu pieni pala aineistoa, jossa näkyy sekä kasvillisuudesta paljasta maata että metsää. Ylemmässä kuvassa vihreänä näkyvä kasvillisuus on jo suodatettu pois maastomallin pisteistä ja alhaalla näkyy puolestaan maaston pisteet sekä niistä tehdyt korkeuskäyrät. Videosta näet miten prosessi toimii Rieglin RiScan Pro-ohjelmassa.

ground

Ihan vertailun vuoksi, alla vastaavalla lennokkiin asennettavalla skannerilla mitattu aineistoa sademetsästä tai oikeammin puuston yläpinnasta. Tämän mittauksen noin 600 000 pisteestä 673 löysi tiensä maanpintaan.

canopy

Oikea vertailu saataisiin tietenkin mittaamalla sama kohde suhteellisen samanaikaisesti eri skannereilla, mutta todettakoon joka tapauksessa, että skannereissa on muitakin eroja kuin hinta. Tämän vuoksi jaksamme aina puhua mittausalgoritmeistä, jotka ovat lähes kaikkien muiden mielestä tylsä ja tarpeeton aihepiiri. Mutta niillä on merkitysta! Signaalinkäsittelyllä on merkitysta!

Näiden kahden kyseisen laitteen kohdalla puhumme lopputuloksessa muun muassa tunkeutuvuudesta kasvillisuuden läpi eli kyvystä mitata maanpintaa tai kasvillisuuden rakenteita, tarkkuuksista ja skannnausnopeudesta, mikä vaikuttaa suoraan tuottavuuteen. Tervetuloa juttelemaan aihepiiristä kanssamme!

Riegl RiCopter -esittely – viikon satoa

Jännittävä lennätysviikko on ohitse ja pääsimme nyt perjantaina takaisin kotitoimistollemme purkamaan matkatavaroita ja viikon kokemuksia.

Sipoon mittauskohde sisältää metsää, peltoa, 2 rakennusta ja sähkölinjan.

Sipoon mittauskohde sisältää metsää, peltoa, 2 rakennusta ja sähkölinjan.

Mittaustyöt onnistuivat hyvin ja pääsemme vasta nyt itsekin tutustumaan aineistoihin lähemmin. Alustava katsaus niihin vaikutti sekä meidät muut paikallaolijat – niin hyvin VUX-skannerin laseri tunkeutui metsään ja maanpintaan.

Kerromme aineistoista lisää myöhemmin, mutta tässä vaiheessa kiitämme lämpimästi kaikkia mukana olleita ja järjestelyissä auttaneita. Alla näkyy muutamia kuvia viikon varrelta ja niiden merkeissä toivotamme hyvää viikonloppua!

Riegl VUX-1HA reppuskannerina

Nyt kun Riegl VUX-1 saapuu Suomeen miehittämättömän ilma-aluksen kannattelemana, niin tuodaanpa esille myös tämän monipuolisen skannerin muita käyttömähdollisuuksia. VUX-1-perheen tarkin laite VUX-1HA (high accuracy) soveltuu nimittäin erinomaisesti maasta käytettäväksi mobiiliskanneriksi eli reppuun!

Tällä palstalla olemme tainneet jo aiemminkin mainita oman Maanmittauslaitoksemme olevan edelläkävijöitä reppuskannausjärjestelmien kehittäjinä ja viimeiseen versioon on hankittu juuri täma samainen VUX-1HA malli.

VUXin suhteen kuukauden heidän edelleen ehti kanadalainen yritys 6T3 Ltd, joka tekee tarkkoja malleja erilaisista urheiluradoista. ”On tärkeää tietää tarkalleen pompun sijainti ja korkeus, kun auto ajaa siihen 200 mailia/tunnissa.”

Reppuskannaus eli jalankulkijan tekemä mittaus on vasta nouseva trendi, mutta sillä on selkeästi oma roolinsa vaikeakulkuisessa maastossa ja kaikkialla, jonne ajoneuvolla ei pääse. Vaihtoehtoisesti osassa näitä paikkoja voi tietysti toimia myös staattisella keilaimella.

Kanadalaisten aineistoa voit katsella videolla:

Lue lisää reppuskannerista täällä.

Koulutusta & kukitusta

Eilen saimme näin upean kukkakimpun kiitoksena viimeisimmästä isosta koulutuksestamme. Samalla kukitettiin tietysti myös kurssilla koulutetut, jotka jaksoivat sitkeästi puurtaa aineistojen käsittelyn parissa. Tästä heidän on hyvä jatkaa uusien mittaustekniikoiden parissa, joita Helsingin kokoisessa kaupungissa joudutaan säännöllisesti ottamaan käyttöön.

kukkia_pieniAsiakkaan eli Helsingin kaupungin työntekijöiden kanssa käytiin pitkä yhteinen taival perehtyen mobiililaserskannaukseen ja erityisesti pistepilviaineistojen käsittelyyn suunnittelun tarpeisiin. Tämän kurssin aikana ei tutkailtu vaan mahdollisuuksia vaan tehtiin ihan käytännön työtä päivästä toiseen. Lopputuloksena luotiin suunnittelijoille kelpaavaa aineistoa Helsingin katujen mittausaineistoista. Ja samalla opittiin tukku uusia asioita.

koulutus2

Aineistoja mitattiin kahdella eri laitteistolla.

Koulutuksen sisältö käsitteli perusasioita mobiilimittausprojektin suunnittelusta alkaen. Suunnittelun ja käytännön toteutuksen lopputulosta pääsee parhaiten arvioimaan prosessoimalla aineistoja, jolloin esimerkiksi liikenteen määrän, mittauslaitteiston, ajotavan, sään ja valaistuksen vaikutus tulee parhaiten esille. Mittausolosuhteiden vaikutuksen näkyminen aineistossa auttaa siten seuraavien mittausten suunnittelussa. Jos joku ihmettelee tuota valaistuksen vaikutusta, niin todettakoon sen vaikuttavan ainoastaan mahdolliseen valokuvaukseen. Laserkeilaimen käyttö on valaistuksesta riippumatonta ja kohteen logistisen vaativuuden mukaan mittausta voidaan tehdä vaikka keskellä yötä.

trajectory

Tässä ajoneuvon tai oikeammin mittauslaitteiston IMU:n liikerataa visualisoituna.

Pääosa koulutuksen ajasta käytettiin itse mittausaineistojen prosessointiin suunnittelijan tarpeisiin käyttökelpoiseksi materiaaliksi.

koulutus

Kurssin aikana ei säälitty ketään, vaan jokainen joutui tekemään töitä itsenäisesti. Eteen tulevia ongelmia käsiteltiin ja niihin etsittiin ratkaisumalleja myös yhdessä.

Lopputuloksena oli upeaa huomata, miten kaikki koulutettavamme selvisivät ongelmanratkaisuun perustuvasta koulutuksestamme hyvin. Työmaalla tai työpöydän ääressä eri tyyppisiä ongelmia joutuu kuitenkin ratkomaan koko ajan, joten koulutuksissa on turha käsitellä vain helppoja tapauksia. Mobiilimittaus ajoneuvosta tai vaikkapa miehittämättömästä lennokista on kaupunkiolosuhteissa haastavaa puuhaa, jos halutaan tuottaa laadullisesti erinomaista mittausaineistoa.

RIEGLin liikkuvat uutuudet VMX-1HA ja VMQ-1HA

RIEGL Laser Measurement Systems on tänään esitellyt kaksi uutta mobiilaserskannausjärjestelmää: VMX-1HA ja VMQ-1HA. Miehittämättömiin ilma-aluksiin alun perin esitelty pieni ja nopea VUX-1HA-skanneri on nyt valjastettu maan pinnalle erilaisiin ajoneuvoihin, juniin tai veneisiin sopiviin liikkuviin kartoitusjärjestelmiin.

RIEGL VMX-1HA on avaimet käteen periaatteella toimitettava kahden skannerin mittausjärjestelmä, joka soveltuu vaativiin GNSS-olosuhteisiin ja tiukkoihin tarkkuusvaatimuksiin (suunnittelutarkkuus). Myös tunnelien kartoitus mobiilisti on mahdollista. 2 MHz:n mittaustaajuudella toimiva ja jopa 500 skannauslinjaa sekunnissa tuottava laitteisto tuottaa tiheän mittausaineiston myös suurilla ajonopeuksilla. Hyvän GNSS-IMU-yhdistelmän ja tiehän skannausaineiston takia liikenteen rytmissä liikkuminen ei tuota minkäänlaisia ongelmia tälle laitteistolle. Optiona järjestelmään voi lisäksi kytkeä erilaisia kameroita.

RIEGL VMX-1HA

RIEGL VMX-1HA

RIEGL VMQ-1HA on avaimet käteen periaatteella & edullisemmin hinnoiteltu yhden skannerin mittausjärjestelmä. Skannerin mittauskulmaa on helppo säätää etukäteen määriteltyjen kulmien avulla, jolloin erityyppiset kohteet on helppo mitata.

Molemmat uudet kartoitusjärjestelmät on optimoitu tyypillisiin liikkuvan kartoituksen kuten tie-ja vesiliikenneväylien, tien pinnan ja kaupunkimallinnuksen tarpeisiin. Luonnollisesti rakennustyömaat, kaivokset ja laajat ympäristöalueet voidaan myös mitata.

Molempien järjestelmien ensimmäiset laitteistot on myyty Yhdysvaltoihin ja toimitukset alkavat heti.

Päivitämme sivuille www.geocenter.fi tiedot uutuuksista heti kun tarkemmat tiedot ovat saatavilla. Sitä ennen tutustu Sparpointissa julkaistuu kuvaukseen uutuudesta ja katsele kuvia upeasta aineistosta!

Kuinka kärpäsestä tehdään härkänen

Viikon kuuma uutisointi satelliittipaikannuksen osalta lienee Helsingin Sanomissa ja muuallakin julkaistu tieto tutkimuksesta, jonka mukaan nyt on keksitty uusi laskentatapa saavuttaa merkittävää parannusta GPS-paikannuksen tarkkuudessa. Hesarin mukaan ”Gps-paikannus tarkentuu merkittävästi, ilman sen parempia laitteita kuin meillä jo nyt on älypuhelimissa ja autojen navigointilaitteissa.” Muutaman vuoden päästä tavallisilla laitteilla päästään senttimetriluokan tarkkuuteen.

Jaahas, koska kaikkiin lehtijuttuihin on pakko suhtautua nykyään ylikriittisesti, niin lähdimme tutkailemaan mitä alkuperäisessä julkaisussa on oikeasti kirjoitettu. Pakkohan se oli tehdä myös sen takia, että jo samana päivänä tavallinen kadunmies toisteli tätä uutista suurella vakaumuksella. Sellainen on median voima.

Niinpä selvisi, että Qualcomin insinööri (Chen), Googlen insinööri (Zhao) ja Kalifornian yliopiston (Riverside) professori (Farrell) puuhailevat kaikki muun ohessa itseohjautuvien autojen eli robottiautojen kehityksen parissa. He ovat kaikki taustoiltaan sähköinsinöörejä ja lisäksi erityisosaamista löytyy matematiikan, fysiikan ja softankehityksen aloilta. Näistä taustoista löytyy siis tutkimuksen motiivi, joka on parantaa liikkuvan kohteen GPS/GNSS-paikoitusta.

Kun nyt päästään tuohon liikkuvan kohteen paikoitukseen, niin ”yllättäen” mukaan tulee myös muitakin sensoreita eli vanha tuttavamme IMU (Inertial measurement unit). Se on satelliittinavigoinnista itsenäinen navigointijärjestelmä, jota tarvitaan erityisesti kertomaan mitä sille liikkuvalle kohteelle tapahtuu GPS-signaalien välissä sekä katvealueilla. Yhdistämällä näiden kahden navigointijärjestelmän tiedot saadaan liikkuvan kohteen sijainti paremmin selville tietyllä ajan hetkellä.

Tutkimuksessa käytettiin kuvan mukaista IMU-laitetta, jonka koko on 85 x 60 x 60 mm ja paino 350 g ilman virtalähdettä ja muita välttämättömiä härpäkkeita. Sieluni silmissä tämä ihan tyypillisen kokoinen lajinsa edustaja istuu mukavasti kiinni kännykässäni parantaen sen navigointiominaisuuksia huomattavasti. Autoon se mahtuu toki jo hyvin, mutta laitteen hinta on liian suuri massatuotantoauton komponentiksi.

NV1000

Kuituoptinen FOG -IMU.

IMUn lisäksi tutkijat kertoivat käyttäneensä satelliittipaikannuksen differentiaalista muotoa eli DGPS:ää. Ihan pelkkä satelliitteista tuleva signaali ei tähän järjestelmään riitäkään, vaan kokeen ehtona oli siis oma tukisasema max. 20 km etäisyydellä liikkuvasta kohteesta. Lähtötietona voitaneen mainita, että tällöin jo satelliittien avulla paikannuksessa voidaan päästä alle 1 m tarkkuuksiin, mutta tarkkuus heikkenee mitä kauemmaksi tukiasemasta mennään. Tukiaseman lähellä kyseessä on siis huomattavasti parempi tarkkuus kuin nykykännykällä tai käsi-GPS-laitteella saavutetaan.

Niin – näiden laitteiden lisäksi se loppu onkin sitten laskentaa jonka arviointia emme ole tehneet. Se on muuten tehty ihan pöytäkoneella, joten se kännykän laskentateho taitaa edelleenkin loppua kesken.

Lopputuloksena on paikannettu liikkuvan kohteen absoluuttista sijaintia muutaman sentin tarkkuudella. Tosin liikkuvan kohteen liikerataa ja sijaintia (ground truth) ei ole varmistettu toisella, tarkemmalla mittausmenetelmällä vaan ainoastaan laskennallisesti. Tämä on sitä samaa peruskauraa mitä me teemme mobiiililaserskannauksen prosessoinnissa, mutta me kontrolloimme mittauksen.

Mitä tällaisesta tutkimuksesta jää käteen? Sen voi todeta heti ensimmäiseksi, että käytettyjen komponenttien kehitys ei ole niin nopeavauhtista, jotta kyseisen tarkkuusluokan sensorit sopisivat parin vuoden sisällä kännykkään. Autojen kohdalla tilanne riippuu puolestaan kyseisten komponettien hintojen kehityksestä.

Meille jäi kuitenkin epäselväksi, saavutettiinko tässä tutkimuksessa oikeasti tuo kuviteltu tarkkuus? Termien sekoittaminen, epäselvä ja epätarkka tehdyn työn kuvaus jättää tilanteen varsin avoimeksi. On myös varsin erikoista, että tutkimuksessa kerrotaan osin saman tutkimusryhmän päässeen 6 cm absoluuttiseen tarkkuuteen jo vuonna 2000 julkaistussa tutkimuksessa, mutta miksi tuon työn tuloksia ei näy missään kaupallisessa sovelluksessa? Sotilaspuolellakin tällainen tarkkuus otettaisiin ilolla vastaan.

Erityisesti Google-yhteyksien takia luulisi Googlen robottiautojen paikannuksen olevan jo supertarkkaa, mutta käytännössä tutkimusryhmä on jo vuosien ajan kertonut aihepiiriin liittyvistä ongelmistaan. Käytännössä he haluaisivat tieinfraan asennettavan navigointia auttavia sensoreita. Jos nämä Googlen ilmeisesti rahoittamat tutkijat ovat oikeassa – halvoilla komponenteilla saadaan tarkkaa paikannusdataa – niin miksi Googlen auto ei pysy edes tiellä pelkän GPS-IMU-paikannuksen avulla?

Summa summarum: terve kriittisyys on aina paikallaan tarkasteltaessa nykytutkimuksen tuotteita.

Mobiililaserskannauksen monet tarkkuudet

Kaksi tuoretta mobiililaserskannausta käsittelevää kirjoitusta herättää huomiota kiinnostavuudellaan – nyt mennään asiaan. Ensimmäisessä käsitellään GNSS-teknologian valinnan vaikutusta mobiililaserskannauksen/UAV-skannauksen lopputulokseen ja toisessa HEREn varapresidentti kertoo millaista mobiililaserskannausta HEREssä tehdään – ensin on selkeästi määritelty millaista tarkkuutta tarvitaan ja sitten on valittu laitteet sekä prosessointipolku tarkkuuden saavuttamiseksi.

Tampereen ratikkaprojektissa vaadittiin lähtöaineistolta alla 2 cm absoluuttinen tarkkuus - toteutimme sen mobiililaserskannauksella.

Tampereen ratikkaprojektissa vaadittiin suunnittelun lähtöaineistolta alle 2 cm absoluuttinen tarkkuus – se toteutettiin mobiililaserskannauksella ilman laputtamista eli signaalipisteiden merkitsemistä.

GNSS-tekniikan hinta kasvaa tarkkuuden parantuessa ja huipputuloksiin tarvitaan hyvien laitteiden lisäksi luotettavat laskentaohjelmat. Mutta aivan oikein kirjoittaja toteaa lopuksi, ettei huippulaitteillakaan saada hyviä lopputuloksia, jolleivat niitä käytä osaavat käyttäjät. Näin se on, kompleksiset järjestelmät vaativat osaamista, jota hankitaan sekä koulutuksella että käytännön työnteolla. Laitteiden helppokäyttöisyyden lisääntyminen ei edelleenkään poista osaamisen tarvetta – pelkkä nappien painaminen ilman ymmärtämystä mitä pinnan alla tapahtuu ei tuota haluttua lopputulosta.

HEREn mobiilikartoitustoimintaa kuvaavassa kirjoituksessa kerrotaan puolestaan miten ja millaisella kalustolla kartoitusta tehdään, miten dataa prosessoidaan ja millaisiin tarkkuuksiin päästään. Kuten tyypillistä, ensin kerrotaan järjestelmän laserskannerin etäisyysmittauksen tarkkuus – 2 cm 100 metrin etäisyydellä. Tällaiseen tietoon moni mobiililaserskannausjärjestelmän hankkija tai aineiston tilaaja helposti sortuu, sillä laserskannerin etäisyysmittauksen tarkkuuden perustella kuvitellaan myös lopputuloksen olevan muutaman senttimetrin tarkkuista. Kirjoituksen myöhemmässä vaiheessa päästään kuitenkin kokonaistarkkuuksiin – HEREn prosessoitujen pistepilvien absoluuttinen sijaintitarkkuus on 5 m ja suhteellinen tarkkuus 100 metrin etäisyydellä on 20 cm. Huh!

Näistä luvuista voimme päätellä aika paljon järjestelmässä käytettyjen komponenttien – laserkeilaimen ja inertianavigointijärjestelmän laadusta ja siten hinnasta. Paljastettakoon lukijalle kuitenkin, ettei ihan halvasta järjestelmästä ole kysymys. Tämä kuitenkin riittää autojen navigoinnin lähtötiedoksi – vai riittääkö?

Kun kerromme asiakkaillemme mitä mobiililaserskannaus on, niin viittaamme usein Googlen ja HEREn kartoitustoimintaan, sillä suurina tekijöinä ne ovat tunnettuja ja tuttuja suurelle yleisölle. Olemme korostaneet ja korostamme näiden lukujen jälkeen toden totta jatkossakin, että meidän myymillämme järjestelmillä ja antamallamme koulutuksella pääsemme tarkkuuksissa huomattavasti tarkempiin lopputuloksiin. Eivät tie/infrasuunnittelijat voi käyttää noin heikkoja aineistoja suunnitelmien lähtöaineistoina, sillä muuten tämä maa ei toimisi.

Jos aihepiiri kiinnostaa enemmän, niin julkaisemme piakkoin mobiililaserskannausjärjestestelmän ostajan oppaan helpottamaan tähän mittaustapaan tutustumista. Ostajan opas auttaa myös perehtymään myös ilmasta tehtyyn lennokkilaserskannaukseen, sillä peruskomponentit ovat samat. Ja kuten aina, kerromme myös mielellämme aihepiiristä lisää ihan kasvokkain.

Lennokit Intergeossa

Miehittämättömien lennokkien buumi jatkuu ja se näkyy myös voimakkaasti Intergeo-messuilla. Tänä vuonna lennokeille on omistettu sessionsa ”interaerial SOLUTIONS”, joka koostuu näyttelyhalli 8:n messualueesta, interaktiivisesta forumista samassa hallissa sekä hallin vieressä olevasta ulkolennätysalueesta. Lennokkitoimintaa harjoittavat yritykset voivat rekisteröityä tähän tapahtumaan erikseen ja messujen kävijät voivat tietysti tutustua lennokeihin muiden mittausvälineiden lisäksi.

Vuoden 2015 messut järjestetään muuten normaalia aikaisemmin jo syyskuun puolivälissä, mikä taannee hyvät kelit lennokkien esittelyyn ulkonäyttelyalueella.

Tavataan Stuttgartissa!

Kuvassa RIEGL RiCOPTER ja VUX1-UAV-skanneri vuoden 2014 Intergeossa. Tänä vuonna messuilla nähdään myös VUX-skannerin uutuusmallit.

Kuvassa RIEGL RiCOPTER ja VUX1-UAV-skanneri vuoden 2014 Intergeossa. Tänä vuonna messuilla nähdään myös VUX-skannerin toukokuussa esitellyt uutuusmallit.

Rautateiden skannaus mobiilisti

Jason Amadori esittelee blogissaan Riegl VMZ-250 mobiiliskannerilla jo vuonna 2011 tehtyä ratamittausta. Mittauslaitteena on meillä Suomessakin olevan VMX-450:n pikkuveli ja edeltäjä.

Jasonin juttua lukiessa ja kuvia katsoessa tuli omista kokemuksistamme mieleen juuri niitä samoja ajatuksia, joita hän jutussaan sitten tuo esiin. Esimerkiksi hämmentävä mittatarkkuus, jolla kiiltävä kiskopari tallentuu mittaukseen ja sekä rataympäristöstötyössä korostuvat monet automaattisen mallinnuksen rutiinit. Kiiltävän kiskon skannaaminen ei nimittäin ole ihan triviaali tehtävä eikä se onnistu kaikilla skannereilla.

VMX-450:llä tehtyissä kaikentyyppisissä kartoitustehtävissä on myös korostunut tuo kirjoituksessa mainittu yksityiskohtaisuuden taso, jonka takia esimerkiksi takymetrillä tehtävien lisämittausten mittausten määrä on kutistunut olemattomiin. Lisäksi emme esimerkiksi maanteillä mitattaessa emme tarvitse signaloituja kontrollipisteitä ollenkaan. Huippulaitteistolla 3D-tarkkuudessa päästään siis alle 10 mm tarkkuuteen ilman erillisiä signaloituja tukipisteitä – kaikki mobiilimittausjärjestelmät eivät suinkaan tue tällaista työskentelyä.

Itse mittausaineistossa näkyy sitten kaikki rataympäristön yksityiskohdat toisin kuin esim. ilmalaserkeilausaineistoissa. Vertailu ilmalaserskannauksen ja mobiiliskannauksen välinen välillä onkin kyseisen blogikirjoitiksen kantava tarina. Kannattaa vilkaista Jasonin blogin kuvat samasta kohteesta ilmasta ja mobiililla mitattuna ja miettiä aineistojen eroja omiin tarpeisiinsa nähden.

RIEGLin mobiilijärjestelmän aineistoa visualisoituna Euclideonin ohjelmalla.

RIEGLin mobiilijärjestelmän aineistoa visualisoituna Euclideonin ohjelmalla.

Apropos, Ranskan valtiolliset rautatiet pääsi muuten VMX-450:llä 5 mm tarkkuuteen verrattaessa vektoroitua mallia pistepilveen. Sama tarkastelu tehtiin kaikkien loppusuoralle päässeiden kandidaattien kanssa ja kilpailu päättyi lopuksi Rieglin voittoon ja hankintaan. Ranskan rautateiden kokemuksista kerromme lisää myöhemmin, kun Riegllidar 2015 -käyttäjäpäivien esitykset julkaistaan.

Merelliset mittaukset

Laserskannaus toimii hyvin myös merellisissä olosuhteissa. Tyypillisiä skannattavia kohteita ovat muun muassa erityyppiset avomerellä sijaitsevat rakenteet, rannikon rakenteet kuten satamat ja itse rannikkon topografia. Samaan aikaan mitataan usein myös merenpohjaa esimerkiksi monikanava- tai viistokaikuluotaimella – tämä on mobiilimittausta parhaimmillaan.

meritaito

Merella etäisyydet muodostuvat helposti pitkiksi, joten skannerilta vaaditaan pitkää mittausetäisyyttä. Tällaisissa tehtävissä Rieglin skannerit VZ-400 ja VZ-1000 ovat siten omaa luokkaansa.

Rieglin etu on myös sen integroitavuus valmiisiin mittajärjestelmiin osaksi kokonaisuutta – mittausanturiksi muiden joukkoon. Kaikuluotaimien maailmassa hollantilaiseen Qinsy-ohjelmaan voi liittää monen eri valmistajan laitteita ja lisäksi myös Rieglin keilaimia. Qinsyssä mittausaineisto voidaan prosessoida reaaliaikaisesti tai skannausaineisto voidaan myös jälkiprosessoida RiProcessin avulla.

Miten tällainen järjestelmä toteutetaan ja millaisiin tuloksiin päästään? Näitä asioita voi tarkastella Hampurin HafenCity-yliopiston artikkelissa, jossa skanneri on liitetty Hampurin satamaviranomaisten kartoitusalukseen Ixbluen inertianavigointilaitteen kanssa. Lisäksi integroinnista on tehty diplomi-insinöörin opinnäytetyö (liite), jossa tarkastellaan erityisesti järjestelmän kokonaisepävarmuutta.

Suomessa on toteutettu vastaava Qinsyn, kaikuluotaimen&Riegl VZ-400 -yhdistelmä jo pari vuotta sitten Meritaito Oy:n ansiosta. Olemme kuulleet mobiilimittauksen olevan niin mukavaa, että staattiset mittaukset tuntuvat suorastaan kömpelöiltä rinnalla. Välillä niitäkin on tietysti pakko tehdä. Voit tutustua Meritaidon mittauksiin katsomalla alla olevan videon.

Tällä viikolla, 25.-28. maaliskuuta USA:ssa oleskelevat voivat myös käväistä New Orleansissa järjestettävässä Hydro 2013 -tapahtumassa. Messujen lisäksi RieglUSAn Joshua France kertoo lisäkokemuksia Rieglin hydrografisen ilmalaserkeilaimen VQ-820-G käytöstä otsikolla ”Continued Assessment of the RIEGL VQ-820-G in Various Environments”.

[embedplusvideo height=”379″ width=”625″ standard=”http://www.youtube.com/v/kai3wr024p0?fs=1&hd=1″ vars=”ytid=kai3wr024p0&width=625&height=379&start=&stop=&rs=w&hd=1&autoplay=0&react=1&chapters=&notes=” id=”ep9190″ /]

ELMF 2012 @Salzburg

Loppuvuoden mielenkiintoisin tapahtuma 3D-laserskannauksen saralla on Salzburgissa 4.-5. joulukuuta järjestettävä European Lidar Mapping Forum – ELMF 2012. Vain ja ainoastaan laserskannaukseen keskittynyt tapahtuma kerää paikalle kaikki laite- ja ohjelmistovalmistajat ja nähtävillä on siis laaja valikoima maa-, ilma- ja mobiiliskannereita ohjelmistoineen. Intergeon ohella ELMF lienee paras paikka Euroopassa lyödä monta kärpästä yhdellä iskulla ja saada rautaisannos laserskannaustietoutta.

ELMF

Messujen ohella ohjelmassa on valmistajien työpajoja, joissa voi tutustua tarkemmin vaikkapa IXsean uuteen Atlans-inertianavigointijärjestelmään tai Rieglin tehokkaaseen VMX-450 liikkuvaan kartoitusjärjestelmään.

Alan toimijoiden kannalta ELMFin mielenkiintoisin osio voi kuitenkin olla konferenssi, jonka esitysten kautta pääsee näkemään mitä muut yritykset puuhaavat. Vertaisarviointia, verkostoitumista ja oman ideapakin kehittämistä siis! Tänä vuonna me voimme ilolla todeta, että asiakkaamme VR Track Oy esittelee osallistujille laserskannaustoimintaansa esimerkkitapauksena Helsingin ja Turun välisen rantaradan tunnelit – kalustona Rieglin skanneri. Tunneleita on pakko seurata vuoden ympäri, sillä vuodenaikojen vaihtelu – varsinkin talvi – aiheuttaa helposti erilaisia muutoksia rakenteissa.

On hienoa nähdä suomalaisia yrityksiä mukana näillä areenoilla. Onnea esitykseen!

IXSEA Atlans

Inertianavigointijärjestelmiä sekä mittauslaitteita maalle, ilmaan ja veden alle tuottava ranskalainen IXSEA/IXBLUE on esitellyt uuden, monikäyttöisen kuituoptisen gyroskooppinsa (FOG) nimelta Atlans.

Atlans on kustannustehokas inertianavigointijärjestelmä, joka sopii sekä liikkuviin kartoitusjärjestelmiin että helikoptereihin/lentokoneisiin. Kustannustehokkuutta tuo muun muassa pitkä käyttöikä ilman ylläpitohuoltoja sekä rakenne, jossa ei ole liikkuvia osia.

Laite painaa vain 3 kg ja sen virrankulutus on myös pieni. Koska laserskannausjärjestelmän nopeuden yhtenä kehittämisen esteenä ilmassa on myös virrankulutus – mitä nopeampi ilmalaserskanneri sen enemmän se kuluttaa virtaa – niin järjestelmän muiden osien virtapihiyttä voi tosiaan arvostaa.

Atlansin esitteessä voi tutustua tarkemmin millaisiin paikannustarkkuuksiin laitteella – yhdistettynä erilaisiin GPS-järjestelmiin – päästään.