Aihearkisto: Laserkeilaus

Ilmalaserskannerien kuninkuusluokka: RIEGL VQ-1460

RIEGL VQ-1460 -laserskanneri on merkittävä edistysaskel ilmalaserskannaustekniikan kehityksessä. VQ-1460 on suunniteltu monenlaisiin sovelluksiin, tiheästä kartoituksesta kaupunkien mallintamiseen, ja siinä yhdistyvät huippuluokan ominaisuudet ja poikkeuksellinen suorituskyky. Tutustumme nyt hieman tarkemmin sensorin ominaisuuksiin, etuihin ja ainutlaatuiseen teknologiaan ymmärtämyksen lisäämiseksi.

Kuvassa RIEGLin uusin lentokone, jota käytetään myös laserskannerien kalibroinnissa.

Yleiskatsaus järjestelmään

RIEGL VQ-1460 on huippuluokan ilmalaserkeilausjärjestelmä, joka tunnetaan monipuolisuudestaan ja tehokkuudestaan. Se toimii jopa 4,4 MHz:n pulssin toistotaajuudella, mikä mahdollistaa nopean tiedonkeruun ja suuren pistetiheyden kartoituksen. Skannausjärjestelmän maksimi lentokorkeus (AGL) on 6 450 m kohteiden heijastuvuuden ollessa ≥ 60 %) ja noita kohta voidaan mitata peräti 7 900 m asti. Skannausjärjestelmä soveltuu erilaisiin sovelluksiin, kuten käytäväkartoitukseen, maatalouteen, metsätalouteen ja kaupunkien mallintamiseen. VQ-1460:n tehollinen pyyhkäisyn leveys on 60 astetta, joten sillä voidaan kattaa nopeasti laajoja alueita. Järjestelmä voi esimerkiksi 300 solmun lentonopeudella kerätä tietoja 996 neliökilometrin alueelta tunnissa, keskimäärin 8 pistettä neliömetriä kohti. Tämä nopeuden ja tiheyden yhdistelmä tekee VQ-1460:stä tehokkaan työkalun maanmittausalan ammattilaisille.

Järjestelmän edut

RIEGL VQ-1460:llä on useita etuja, jotka erottavat sen muista laserskannereista:

– Korkea pistetiheys: tasaisen pistevälin ja pistetiheyden eri maastoissa.

– Lentosuuntaan nähden kohtisuorat ja yhdensuuntaiset pisteprofiilit eli matriisi. Mittausjärjestelmä on suunniteltu tällaista aineistoa haluavien käyttäjien toiveesta. Vaihtoehtoisesti RIEGL VQ-1560III-S tarjoaa RIEGLin ns. Crossfire-aineistojakauman, jossa kahden skannerin profiilit leikkaavat toisensa muodostaen X-kuvioita. Hieman kallistetut skannerit tarjoavat paremman pistejakauman pystysuorissa kohteissa kuten pylväissä ja rakennusten julkisivuissa, mutta molemmilla pistejakaumilla on omat kannattajansa.

laserskannerien vertailu
RIEGLin kahden tehokkaimman ilmalaserskannerin pistejakauman vertailu.

– Ilmakehän häiriönvaimennus: hiljan julkaistu uusi optinen ominaisuus minimoi ilmakehän häiriöiden aiheuttamat lähikaiut, mikä johtaa puhtaampiin pistepilviin.

– Integroidut järjestelmät: Skanneri sisältää inertiamittausyksikön (IMU) ja GNSS-vastaanottimen tarkkaa paikannusta varten sekä vaihtoehtoja korkearesoluutioisten RGB/NIR-kameroiden integroimiseksi. Samaan pakettiin voidaan integroida kaksi kameraa ja aikasynkronointi on mahdollista useammalle kameralle tai muulle mittausanturille.

– Käyttäjäystävällinen muotoilu: Kompakti kotelo on suunniteltu asennettavaksi helposti eri alustoille, mikä takaa optimaalisen suorituskyvyn erilaisissa ympäristöissä.

RIEGL VQ-1460 laserskannausjärjestelmä.

Mikä tekee Riegl-teknologiasta erityistä

RIEGLin teknologia erottuu yhtiön vuosikymmenien sitoutumisesta laserkeilauksen innovointiin. Yrityksen Smart-Waveform-teknologia mahdollistaa kehittyneen signaalinkäsittelyn, joka mahdollistaa useiden kohteiden havaitsemisen yhtä laserpulssia kohden ja optimoidun mittausten jakautumisen. Tämä tekniikka parantaa tietojen laatua ja luotettavuutta, minkä ansiosta RIEGL-skannerit ovat alan ammattilaisten suosima valinta. Lisäksi RIEGLin järjestelmät on suunniteltu käyttäjäkokemusta ajatellen. RIEGL VQ-1460 järjestelmän graafinen käyttöliittymä helpottaa skannerin parametrien käyttöä, ja RiACQUIRE-ohjelmisto helpottaa tehokasta tiedonkeruuta ja -hallintaa. Tämä helppokäyttöisyyteen keskittyminen varmistaa, että käyttäjät voivat maksimoida laitteidensa potentiaalin.

Käyttäjät

Suomesta käsin lähin RIEGL VQ-1460 otetaan käyttöön keväällä 2025 Virossa. Suomalaiset palveluntarjoajat ovat nykyään ulkomaisessa omistuksessa, joten meillä järjestelmää nähtäneen käytössä erilaisissa mittaushankkeissa riippuen tänne saapuvien palveluntarjoajien kalustosta.  Tässä vaiheessa muut käyttäjät ovat kehuneet järjestelmän suorituskykyä ja luotettavuutta. Esimerkiksi kanadalaisen XEOS Imagerie Inc:n toimitusjohtaja Tony St-Pierre totesi, että VQ-1460:n ylitti heidän odotuksensa ilmakartoituksen tehokkuuden osalta. Hän korosti skannerin erinomaista tuottavuutta ja helppoa integroitavuutta nykyisiin työnprosesseihin. XEOS tuottaa laitteistolla muun muassa digitaalista kaksosta.

Monet käyttäjät arvostavat VQ-1460:n tuottamaa korkealaatuista dataa, joka mahdollistaa tarkan mallintamisen ja analysoinnin eri sovelluksissa. Kyky kerätä nopeasti suuria tietomääriä on tehnyt siitä lyhyessä ajassa korvaamattoman arvokkaan työkalun maanmittausyrityksille, jotka haluavat parantaa toimintansa tehokkuutta.

Järjestelmän käytön aloittaminen

Aloittaakseen RIEGL VQ-1460:n käytön operaattoreiden perehdyttävä järjestelmään ja huomioitava ainakin seuraavia asioita:

  1. Tutustuminen: Tutustu käyttöoppaaseen ja tutustu skannerin komponentteihin ja ominaisuuksiin.
  2. Asennus: Varmista asianmukainen asennus valitsemallesi alustalle käyttämällä standardoituja kiinnikkeitä.
  3. Kalibrointi: RIEGL VQ-1460 toimitetaan tehdaskalibroituna. Asennuksen jälkeen tehdään kalibrointilento, josta saaduilla arvoilla järjestelmä on kalibroitu kyseissä asennuksessa. Tämän jälkeen kalibrointeja ei tarvita jollei järjestelmän sijaintia lentoalustalla tai koko lentoalustaa vaihdeta. Systeemikalibrointia ei tarvitse tehdä.
  4. Ohjelmiston asennus: Asenna RiACQUIRE-ohjelmisto tietokoneellesi, jotta voit hallita tiedonkeruuta tehokkaasti.
  5. Testilennot: Suorita testilentoja järjestelmän suorituskyvyn tarkistamiseksi ja tarvittavien säätöjen tekemiseksi ennen täysimittaista käyttöä. Lennon parametrien suunnittelussa apunasi on RIEGL RiPARAMETER.
  6. Tiedonkeruu: Aloita tietojen kerääminen projektin vaatimusten mukaisesti hyödyntäen skannerin edistyneitä ominaisuuksia.

Uuden teollisen mittausjärjestelmän käyttöönotto vaatii siis suunnittelua, perehtymistä ja testaamista ollen ihan oma projektinsa. Tehokkaimmat järjestelmät ovat käytännössä tuotantolaitoksia lentokoneessa tai ajoneuvossa, eikä kenenkään kannata rynnätä ensimmäiseen projektiin ilman kunnollista käyttöönottoa.

Yhteenveto

RIEGL VQ-1460 -laserskanneri on tehokas väline lentokoneesta tehtävässä kartoituksessa. Sen korkea pistetiheys, tehokkaat tiedonkeruuominaisuudet ja innovatiivinen muotoilu tekevät siitä sopivan monenlaisiin sovelluksiin. Positiivinen käyttäjäpalaute korostaa sen suorituskykyä ja helppokäyttöisyyttä, joten VQ-1460 on erinomainen valinta ammattilaisille, jotka etsivät luotettavia ratkaisuja ilmakartoitukseen ja mallintamiseen. Teknologian kehittyessä jatkuvasti RIEGL pysyy edelläkävijänä ja tarjoaa työkaluja, jotka parantavat tuottavuutta ja tarkkuutta maanmittauskäytännöissä kaikkialla maailmassa.

Kiinnostaako laserskannaus/Lidar/laserkeilaus? Nordic Geo Center Oy tarjoaa ratkaisuja monenlaisiin käyttötarpeisiin ja myös koulutusta laitteiden käyttöön. Emme ole ihan eilisen teeren poikia vaan yritys täyttää tänä vuonna 20 vuotta. Maanmittausalan maahantuontikokemus ulottuu tästä vielä useamman vuosikymmenen taakse.

Tehokkuuden avaimet: RIEGL VUX-240-24 Laserskanneri

Nopeasti kehittyvällä maanmittausalalla kehittyneen teknologian käyttöönotto on olennaisen tärkeää tehokkuuden ja tarkkuuden lisäämiseksi. Yksi tällainen teknologinen edistysaskel on RIEGL VUX-24024 -laserskanneri, joka on ammattimaisille maanmittareille suunniteltu tehokas työkalu. Tässä blogikirjoituksessa tarkastellaan RIEGL VUX-24024 laserskannerin ominaisuuksia, etuja ja sovelluksia ja esitellään, miksi se on optimaalinen valinta droonilla tai helikopterilla tehtyihin kartoitusprojekteihin.

RIEGL_VUX-240-24

Yleiskatsaus RIEGL VUX-24024:ään

RIEGL VUX-24024 on päivitetty versio vakiintuneesta RIEGL VUX-240-mallista, joka on suunniteltu erityisesti käytettäväksi miehittämättömissä ilma-aluksissa (UAV), helikoptereissa ja muissa ilma-aluksissa. Tämä kevyt ilmassa käytettävä laserkeilain tarjoaa laserpulssien toistotaajuuden aina 2,4 MHz asti, mikä mahdollistaa jopa 2 miljoonaa mittausta sekunnissa. Sen leveä 75 asteen näkökenttä ja jopa 600 profiilia sekunnissa oleva skannausnopeus soveltuvat erityisen hyvin sovelluksiin, joissa tarvitaan suurta pistetiheyttä, kuten voimajohtojen tarkastuksiin, rautatieratojen arviointiin ja putkistojen valvontaan. RIEGLin ns. drooniskannerien kategoriassa VUX-24024 mahdollistaa korkeimman, lähes 4700 jalan (~1,5 km) AGL lentokorkeuden.

RIEGL VUX-24024:n edut

RIEGL VUX-24024:llä on useita etuja, jotka tekevät siitä ammattimaisen katsastuksen suosikkivalinnan:

– erinomainen suorituskyky: Skannerin nopeat tiedonkeruuominaisuudet parantavat merkittävästi työnkulun tehokkuutta, jolloin voidaan kattaa laajoja alueita lyhyemmässä ajassa. Jos vähäisempi pistetiheys riittää, niin tällöin voidaan lentää vielä nopeammin.

Kuvassa näkyy RIEGL VUX-24024 laserskannerin tehokkuus 1100 jalan AGL lentokorkeudella ja 60 solmun lentonopeudella. Pistetiheydeksi saadaan lähes 126 pistettä/m2. Esitteestä löydät myös muita esimerkkejä eri lentokorkeuksilla ja RiParameter-ohjelman avulla voit laskea omien vaatimustesi mukaiset arvot.

– monipuolisuus: RIEGL VUX-24024 laserskanneria voidaan käyttää eri alustoilta, kuten UAV:ltä ja miehitetyistä helikopterista, joten se soveltuu erilaisiin kartoitustarpeisiin. Maksimilentokorkeus on 4700 jalkaa (1430 m) ja tässä lentokorkeudessa skannerin mittaa hyvin @60% heijastaviin kohteisiin. Huonosti heijastavia kohteita kuten tummia kattoja tämä skanneri mittaa myös varsin korkealta, sillä 20% heijastavat kohteet voidaan mitata 1200 m etäisyydeltä.

– edistynyt teknologia: Skanneri hyödyntää RIEGLin Waveform-LiDAR-teknologiaa, joka mahdollistaa kaiun digitoinnin ja reaaliaikaisen aallonmuodon käsittelyn, jotka ovat ratkaisevia, kun halutaan tunkeutua tiheään lehdistöön ja kerätä tarkkoja tietoja haastavissa ympäristöissä.

– turvallinen tietojen tallennus: Sisäinen SSD-muistikapasiteetti, 2 TByte, takaa runsaan tallennustilan laajoille tietokokonaisuuksille, kun taas irrotettava CFast-muistikortti helpottaa nopeaa tiedonsiirtoa tietokoneisiin.

RIEGL VUX-24024:n käyttöönotto

Seuraavassa on muutamia ohjeita niille, jotka ovat kiinnostuneita ottamaan RIEGL VUX-24024 -laitteen osaksi maanmittaustyökalupakettiaan:

1 Laserskanneriin perehtyminen: Ota yhteyttä RIEGLin valtuutettuun maahantuojaan, jotta ymmärrät skannerin toiminnot täysin.

2 Ohjelmistojen yhteensopivuus: Varmista yhteensopivuus nykyisten ohjelmistojen kanssa, jotta pistepilviä voidaan hallita tehokkaasti.

3 Hyvät käytännöt: Noudata parhaita käytäntöjä tiedonkeruussa, mukaan lukien optimaaliset lentoreitit ja asetukset, jotka on räätälöity hankkeen erityisvaatimusten mukaisesti. Näitä laserskannerin osalta voit tutkia näitä parametrejä RIEGL RiParameter-ohjelmassa.

4 Kustannukset: VUX-24024:n kaltaisiin suorituskykyisiin laitteisiin tehtävät alkuinvestoinnit voivat olla organisaatiollesi huomattavia. Budjetoinnin osalta kannattaa myös muistaa vanha hyvä ohjesääntö laitehankinnan kustannuksista: kerro mittalaitteen hankintahinta kertoimella 1,5 sillä uuden teknologian käyttöönotto vaatii myös aikaa ja kouluttautumista.

5 Tietojen hallinta: Suurten pistepilvitietomäärien käsittely voi vaatia erikoistuneita uusia tietokoneita, ohjelmistoja ja koulutusta.

6 Ympäristötekijät: Sääolosuhteet voivat vaikuttaa suorituskykyyn, joten lentojen huolellinen suunnittelu on välttämätöntä. Vaikka monet nykyisistä tilaajatahoista ovat autuaan tietämättömiä vuodenajan vaikutuksesta mittaustoimintaan, niin käytännön toimijoiden on ne tiedostettava.

Päätelmät

RIEGL VUX-24024 -laserskanneri edustaa merkittävää edistystä ilmassa käytettävässä LiDAR-tekniikassa maanmittausalan ammattilaisille. Sen korkean suorituskyvyn, monipuolisuuden ja kehittyneiden ominaisuuksien yhdistelmä tekee siitä korvaamattoman arvokkaan työkalun tarkkojen mittausten tekemiseen eri sovelluksissa. Kun maanmittausalan kehitys jatkuu teknologisen kehityksen myötä, VUX-24024-laserskannerin kaltaisilla työkaluilla on ratkaiseva rooli tehokkuuden ja tarkkuuden parantamisessa kentällä.

Oletko käyttänyt RIEGL VUX-24024 tai vastaavaa laserkeilaustekniikkaa? Kuulemme mielellämme lisää kokemuksistasi. Pysy myös kuulolla seuraavassa postauksessamme, jossa esittelemme RIEGLin muita, ammattikäyttäjille suunnattua innovatiivista geodeettista laserkeilausantureita ja järjestelmiä. Drooniskannerien erilaisiin integrointeihin voit tutustua esimerkiksi RIEGLin kuvagalleriassa.

Nordic Geo Center Oy on RIEGL Laser Measurement Systemsin auktorisoitu maahantuoja Suomessa, Virossa ja Ruotsissa.

RIEGL VZ-4000i

RIEGL VZ-4000i: Tehokas Pitkän Matkan Laserskanneri

Intergeossa 2024 Riegl esitteli uuden pitkän matkan laserskannerin tuotenimellä RIEGL VZ-4000i25. Tämä skanneri korvaa edeltävän VZ-4000-mallin ollen sitä nopeampi ja tehokkaampi. Laite mittaa 4 600 m etäisyydelle 15 mm etäisyystarkkuudella (1 sigma @1000 m) ja 10 kaarisekunnin (0,0028°) kulmatarkkuudella. Skannerin ominaisuuksia esitellään tarkemmin uudella tuotevideolla.

Videon aineistosta näkyy, kuinka jälleen kerran kuinka Rieglin skannerilla ei ole vaikeuksia saavuttaa luvattua maksimietäisyyttä (kuva alla).

RIEGL VZ-4000i25 on täynnä Rieglin tuttua teknologiaa alkaen mittausalgoritmista, joka perustuu aallonmuodon analysoitiin. Tämä pulssimittaustekniikka takaa Rieglin skannereille tutun tarkkuuden, joka koskee siis jokaista mitattua pistettä. Kyseessä ei ole pisteiden keskiarvosta, jonka avulla monessa muussa laserskannausteknologiassa tuotetaan tarkkuus.

Jos olet käyttänyt VZ-400i tai VZ-600i -laserskanneria, niin VZ-4000i25 tarjoaa saman tutun käyttäjäkokemuksen alkaen skannerin ohjauksesta aina tiedonsiirtoon. Kun mittausparametrit on valittu, skannauksen voi aloittaa yhdellä kosketusnäytön kosketuksella. Näin voi jatkaa skannausasemalta toiselle jollei mittausparametrejä tarvitse vaihtaa. Integroitujen sisäisten sensorien avulla skanneri hoitaa tasauksen itse ja lisäksi ne mahdollistavat aineiston automaattisen rekisteröinnin ja georeferoinnin RTK-tarkkuiseen GNSS-koordinaatistoon. Mahdolliset paikallisen koordinaattijärjestelmän pisteet saat myös skannattua kunhan ne on signaloitu lasiprismalla tai heijastavalla tarralla.

Tuttuun tapaan RIEGL VZ-4000i25 skannerin sisällä on myös paljon prosessointitehoa, mikä mahdollistaa aineiston prosessoinnin jo mittauksen aikana. Lisäksi käyttäjä voi koodata lisää Python-sovelluksia skanneriin ja näin prosessoida käyttäjäkohtaisia lopputuloksia. Optiona skannerille on myös saatavissa tutut sovellukset Monitor+ App, Design Compare App ja Slope Angle App. Tämän skannerin avulla voidaan siis myös reaaliaikaisesti monitoroida potentiaalisia maanvyörymäpaikkoja ja avolouhoksen seinämiä.

Monipuolisilla tiedonsiirtomaisuuksilla aineistoa myös voi siirtää eteenpäin muille käyttäjille kunhan skanneri on kytkettynä siirron mahdollistaviin tietoliikenneverkkoihin. Erilaisia työskentelymahdollisuuksia kuvataan alla olevassa kaaviossa.

Sisäinen 12 megapikselin kamera tuottaa panoraamakuvia, joiden pikseliresoluutio on 3.7 cm 1000 m etäisyydellä.

RIEGL VZ-4000i25 pitkän matkan laserskanneri painaa 13 kg, on silmäturvallinen ja suunniteltu vaativiin käyttöympäristöihin IP-luokituksen ollessa 64. Perinteisten sovellusalueiden kuten maanmittauksen ja kaivosmittauksen lisäksi, tällä skannerilla voi myös tehokkaasti dokumentoida laajoja kulttuuri- ja luontoperintökohteista. Halutessasi voit tutustua skannerin näyteaineistoon, joka on videossa neljältä asemalta mitattu kohde.

Kiinnostuitko? Kysy lisää ottamalla meihin yhteyttä . Meille voi myös tulla käymään Helsingin Kulosaareen ja puhelimeenkin vastaa botin sijasta ihminen.

Mobiiliskannausta RIEGLin staattisella VZ-600i laserskannerilla

Kun RIEGL Laser Measurement Systems esitteli uusimman maalaserskannerinsa tuotenimellä VZ-600i, niin siitä tuotiin esiin kolme pääkohtaa. RIEGL VZ-600i on

1) Staattinen maalaserskanneri, joka mittaa 0,5 m – 1000 m etäisyyksiä jalustalle sijoitettuna. Skannerin mittauksen tarkkuusarvot kerrotaan seuraavasti:

  • Etäisyysmittauksen tarkkuus 5 mm@100 m (1 sigma)
  • 3D-sijaintitarkkuus 3 mm@50 mm ja 5 mm@100 m (1 sigma)
  • Etäisyysmittauksen toisto tarkkuus 3 mm@100 m (1 sigma)

2) Teollisuusmittauksen soveltuva staattinen laserskanneri

  • Etäisyysmittauksen toistotarkkuus 1 mm@100 m (1 sigma)

3) Kinemaattinen eli mobiili laserskanneri

Isoisän sillan mittausta Mustikkamaalta Kalasataman suuntaan.

Laser – etäisyysmittaus ja kulmamittaus – toimii kinemaattisessa mittauksessa yhtä tarkasti kuin staattisessakin, mutta virhebudjettiin täytyy nyt lisätä muitakin tekijöitä. Pistepilven sijaintitarkkuus saadaan reaaliaikaisesta RTK-mittauksesta mutta lopputuloksen tarkkuuteen vaikuttaa myös esimerkiksi skannerin sisäinen IMU, mittausalusta ja laskenta-algoritmi, jossa hyödynnetään myös laserin mittaustarkkuutta.

Talvella aloimme esittelemään pikkuskanneria staattisten maalaserskannerien perinteisellä käyttötavalla eli jalustalta yksittäisiä asemia mitaten. VZ-600i:n edeltäjiä on voinut kaiken aikaa käyttää myös kinemaattisessa mittauksessa ja olemmekin myyneet muutamia tällaisia skannausjärjestelmiä RIEGL VMZ-nimikkeellä. Seuraavaksi vuorossa oli VZ-600i -skannerin käyttö kinemaattisena skannerina ja tarkempi perehtyminen sen ominaisuuksiin tässä käytössä.

Keväällä 2024 Riegl VZ-600i mittasi uuden raitiotielinjan 13 kinemaattisesti.

Raitiolinja 13 – kinemaattinen/mobiili/liikkuva laserskannaus

Muutaman pienen kokeilun jälkeen saimme tilaisuuden mitata avoimen tilan ulottuvuuden (ATU) Helsingin uusimmalla raitioväylällä 13. Tätä kirjoittaessa raideliikenne on jo koeajossa, mutta keväällä lumien sulaessa rakennustyö oli vielä kesken.

Raitiolinja 13 on noin 4,5 km pitkä ulottuen Nihdistä Pasilaan, joten se on ihan sopivan kokoinen projekti kinemaattiselle mittaukselle, jossa maksiminopeus on 10 km/h. Tällöin skanneri pyörii 3D-mittausmoodissa. Mittausta teimme siis noin 9 km eli koko linja kahteen suuntaan. Jos skannerilla mittaa 2D-profiileja, niin maksiminopeus on 15 km/h. Koska olemme RIEGL VMX-skannerien myötä tottuneet mittamaan liikenteen tahdissa kevyesti jopa 120 km/h nopeudella, niin edessä oli taas erilainen kokemus.

Mittaus tehtiin kahdessa osassa, koska linja jakautuu eri rakentajien kesken. Osuus Nihdistä Mäkelänkadulle mitattiin ensin ja skanneri asennettiin kiskoilla liikkuvaan mönkijään. Laadun varmistamiseksi mittasimme kiskot molempiin suuntiin ja ajo/skannaus yhteen suuntaan kesti 30 minuuttia.

Jälkimmäinen osuus käsitti sitten raitiotieosuuden Mäkelänkadulta Pasilaan ja tällä kertaa skanneri oli asennettu sähköauton katolle. Koko mittaus oli valmis noin 20 minuutissa eli supernopeasti. Pasilan osuus oli jo käytössä, joten turvallisuussyistä mittaus tehtiin tällä kertaa yöllä.

Molempien mittausten jälkeen aineisto prosessointiin RIEGL RiSCAN PRO-ohjelmassa, johon nyt nyt uuden skannerin myötä integroitu kinemaattiseen aineiston prosessointimoduuli. Näin vältytään ohjelman vaihtamiselta, sillä muut RIEGLin muiden kinemaattisten skannerien aineistot eli ilma-, drooni- ja maan pinnalla mittaavat 2D-skannausjärjestelmät, prosessoidaan RiPROCESS-ohjelmistossa. VZ-600i-laserskannerin 3D-aineisto on kuitenkin lähtökohtaisesti erilaista kuin muiden Rieglin kinemaattisen skannerien, joten prosessointiohjelmisto on vaatinut lisäkehitystä. Tästä kehittämistyöstä kerrotaan hieman enemmän tämän kirjoituksen lopussa.

RIEGL VZ-600i-laserskannerin kinemaattinen aineistoa näkyy alla olevassa kuvassa. Sen laatu on yllättänyt meidätkin positiivisesti, mutta kun trajektorilaskenta on saatu kuntoon, niin RIEGLin skannereiden tunnusomainen erinomainen laserteknologia näyttää vahvuutensa.

Tässä ATU-alueiden raitiotiemittauksessa aineiston suhteellinen tarkkuus oli etusijalla, sillä ATU-analyysissa selvitetään, osuuko raitiovaunun tielle mitään rakenteita tai vaikkapa kasvillisuutta. Kaarteissa täytyy huomioida radan kallistuminen ja myös raitiovaunun nopeudella on merkitystä ATU-alueen ulottuvuuksiin. Radan rakentamisen jäljiltä reitillä oli kuitenkin näkyvissä mittausperustan pisteitä, joista luotimme kiinteissä rakenteissa kuten rakennusten julkisivuissa ja kallioissa sijaitseviin pisteisiin. Sen sijaan sähkö- ja valaisinpylväissä sijaitsevat pisteet ovat ajan myötä epäluotettavia, koska nämä rakenteet liikkuvat monivuotisten projektien aikana.

Iloksemme huomasimme, että RTK-paikannettu aineisto istui mittausperustaan hyvin kiintopisteiden ollessa noin tuuman sisällä ja virheen ollessa saman suuntainen. Sisäisesti tarkempi aineisto olisi siis tarvittaessa helppo kalibroida vielä tarkemmin paikoilleen. ATU-alueiden tarkastelussa raitiovaunun profiilia varoalueineen kuljetetaan pistepilven läpi ja hyvää suhteellista tarkkuutta tarvitaan erityisesti pysäkkien kohdalla. Kiveykset on rakennettu lähes kiinni vaunujen viereen niin, ettei kukaan pääse putoamaan väliin. Iso-Britanniassa vierailleet tunnistanevat kuuluisan ”Mind the Gap” käsitteen raideliikenteessä.

Taustaa RIEGL VZ-600i -laserskannerin kinemaattiselle prosessoinnille

Käytännön selvityksen jälkeen on syytä käydä läpi millainen ajatusmaailma VZ-600i -laserskannerin kinemaattisen mittauksen taustalla on ja millaista kehitystyötä RIEGL on joutunut tekemään saadakseen aineistosta näinkin tarkkaa. Muistutetaan siis lukijaa: tämän skannerin kohdalla staattisesti skannatessa aineisto on tarkempaa kuin kinemaattisessa mittauksessa.

Kinemaattisen mittauksen kohdalla VZ-600i-laserskannerin suurin heikkous on sen heikko (ja halpa) inertiamittausyksikkö (IMU). Rieglin kinemaattisten skannerit integroidaan tyypillisesti laadultaan huomattavasti parempien INS-GNSS-järjestelmien kanssa, jolloin liikeradasta saadaan parempi ja siten koko pistepilviaineistosta kaikin tavoin laadukkaampi. Mitä halvempi IMU, sen huonolaatuisempi aineisto on se tyypillinen tarina.

Tästä syystä ns. tyypillisellä kinemaattisten aineistojen prosessoinnilla VZ-600i-laserskannerin aineistosta ei saada kovin hyvää, vaikka sen laserkomponentti olisi hyvin tarkka. Myöskään SLAM-teknologia ei RIEGLin mielestä tarjoa vastausta paremman tarkkuuden saavuttamiseksi. Itävallan tutkimuksen edistämisen virasto rahoituksella yhteistyössä Wienin teknisen ylipiston kanssa aloitettiinkin trajektorin laadun parantamiseen keskittyvä projekti, jonka hedelmistä nautimme nyt ja tulevaisuudessa kaikkien Rieglin kinemaattisten laserskannerien aineistojen prosessoinnissa. Pelkistettynä ajatus on robotiikasta tuttu kokonaisvaltainen menetelmä GNSS-, IMU- ja LiDAR-tietojen integroimiseksi, joka perustuu kaikkien mittaustietojen samanaikaiseen mukauttamiseen tarkan liikeradan ja siten pistepilven saamiseksi.

Käytännössä skannereissa tehdään anturitason virhemallinnus, joka puolestaan mahdollistaa inertiasensoreiden virhekomponenttien (esim. kiihtyvyysanturin ja gyroskoopin virheisen) luotettavamman arvioinnin. Tämän seurauksena jopa edullisia inertiasensoreita voidaan käyttää niin, että lopulliset tiedot ovat tarkkoja. Koko menetelmä perustuu siis virheiden tarkkaan tunnistamiseen, mallintamiseen ja niiden eliminointiin mittaustapaa myöten. Tästä syystä skannerissa kannattaa esimerkiksi käyttää mittauksen aikana mielellään vuorottelevaa kiertokuviota. Skanneri pyörii tietyllä nopeudella tietyn ajan ja vaihtaa sitten pyörimissuuntaa.

RIEGL VZ-600i -laserskannerissa kinemaattisen mittauksen voi myös nähdä klassisen stop-and-go -laserskannauksen työnkulun laajennuksena. Stop-and-go -aineiston hankinnassa laserkeilain asennetaan moottoroidulle alustalle, mutta tiedonkeruu suoritetaan vain alustan ollessa paikallaan. Nyt täydennetään tällaista stop-and-go-työnkulkua. Sen sijaan, että tietoja kerättäisiin vain pysäytysvaiheen aikana, lisätietoja voidaan kerätä myös liikkeellelähtövaiheen aikana. Lisäksi tarkempana pidettyä staattisesti mitattua pistepilveä voidaan myös käyttää rajoittamaan kinemaattista pistepilveä ja siten auttamaan liikeradan arvioinnissa. Toisaalta kinemaattisesti mitattujen pisteiden lisääminen johtaa tiheämpään ja yksityiskohtaisempaan lopulliseen pistepilveen ja auttaa täyttämään puuttuvat tiedot, jos kohteet ovat peittyneitä ja jos niitä ei ole havaittu näkyvissä staattisista skannauspaikoista.

Mutta millaisiin tarkkuuksiin RIEGL VZ-600i -laserskannerin kinemaattisella mittaustavalla voi saavuttaa? Edellä mainitussa artikkelissa on saavutettu RMSE-tarkkuus on jatkuvasti parempi kuin σ = 5 mm tasaisilla pinnoilla. Muilla alueilla RMSE on 3,6 cm. Mutta laskennan kehitys jatkuu edelleen. Näin ollen odotammekin tuloksia mielenkiinnolla myös RIEGLin kinemaattisessa prosessointiohjelmassa RiPROCESS, mitä työtä tuore artikkeli valaisee mielenkiintoisesti. Tässä kehityksessä olemme myös siinä ikuisuuskysymyksessä, mikä on fyysisen laitteen ja ohjelmiston keskinäinen suhde. Tehokkaimmissa laitteissa ohjelmisto on näet tiukasti integroitu laitteeseen tehostaen sen käyttöä.

Kiinnostuitko laserskannereistamme? Toimistomme sijaitsee Helsingin Kulosaaressa ja työmaamme kaikkialla Suomessa, Virossa ja Ruotsissa. Ota yhteyttä ja saavu paikan päälle, niin kerromme lisää.

Saksan digikaksonen

Talven ja kevään aikana eteen on tullut mielenkiintoisia isojen alojen ilmalaserskannausprojekteja. Monissa Euroopan maissa, myös Suomessa, mitataan nyt isoja vesistöalueita vihreällä laserilla.

Tällä viikolla julkaistiin myös koko Saksan käsittävän ”digikaksosprojektin” ilmalaserskannauksen kilpailutuksen lopputulos. Vuonna 2021 julkaistujen tietojen perusteella on tähdätty runsaan 40 pisteen/m2 tiheyteen, mutta lopullisen kilpailutuksen parametrejä emme ole nähneet.

Projekti on mielenkiintoinen monessa mielessä. Ensinnäkin sen tilaaja on Saksan liittovaltion kartoitusvirasto BKG, vaikka Saksassa tämänkaltaisen kartoitustyöntyön hoitavat tyypillisesti eri liittovaltiot itsenäisesti. Joulukuussa 2023 pidetyssä lehdistötilaisuudessa BKG kertoo hankeen motivaation olevan pääasiallisesti ilmastonmuutos ja Pohjanmeren rannikkoalueiden seuranta. Digikaksoselle löytyy luonnollisesti paljon muutakin käyttöä.

Forum 3/2023 lehdessä esitellään digikaksoshankkeen rakennetta ja kuvassa kerrotaan, että koko Saksa aiotaan mitata kolmen vuoden syklissä. Ensimmäinen kierros on 2024-2026.

Yllä oleva kuva on puolestaan napattu BDVI:n Forum-lehden julkaisusta 3/2023, jossa kerrotaan hankkeen taustoja ja tavoitteita. Julkaisusta huomaa, että BKG:lle näyttää olevan rankka paikka ilmalaserskannaustekniikan vaihtuminen ns. lineaariseksi tai ainakin perinteisempään suuntaan. Tämä projekti leivottiin alun perin ns. yksittäisfotoniteknologialle, mutta alustava sopimus kaatui jos useita vuosia sitten kilpailijoiden valitukseen. Toisin siis kuin tuossakin julkaisussa kirjoitetaan, tällä hetkellä RIEGLin ilmalaserskanneriteknologialla voidaan saavuttaa samoja tuotantotehokkuuksia kuin yksittäisfotoni- tai Geiger-teknologioilla tarkkuuden ollessa erinomainen. Tosin RIEGL Waveform-Lidar eli aallonmuodon analysointiin perustuva digitaalinen teknologia ei tarkemmin ajatellen edes vastaa perinteisiä lineaarisia ja analogisia laserskannausteknologioita.

Nyt kun kilpailutuksen tulos on näkyvissä eurooppalaisen tarjouspalvelun TEDin sivuilla, niin voidaan RIEGLin aallonmuotoa analysoivan teknologian olevan tässä vaiheessa voittaja. Tosin RIEGLin laserskannereita käyttävien konsulttien on tehtävä työnsä hyvin seuraavan kolmen vuoden aikana. Kilpailutus on jaettu kahdeksaan osaan, joista yhdelle ei julistettu voittajaa, mutta lopusta seitsemästä RIEGLin teknologialla on voitettu 6 kohdetta. Kokonaisarvoltaan 20,5 miljoonan euron hintainen sopimus on tehty neljän yhtiön kanssa ja se kestää kolme vuotta.

Vielä emme siis ole nähneet yksittäisfotoniteknologioihin perustuvien lidarien syrjäyttävän perinteisempiä tekniikoita isojen alueiden tarkassa ilmalaserskannauksessa. Kenenkään ei kuitenkaan kannata paukuttaa henkseleitään, sillä kehityskilpailu jatkuu armottomana monessa maassa. Kaupalliset markkinat ovat menneet jo uusiksi useampaan otteeseen ja 10 vuoden kuluttua tilanne saattaa taas olla erilainen. Mutta näin vuonna 2024 RIEGL ansaitsee kaiken saavuttamansa maineen ja kunnian ollen kaupallisen laitekehityksen huipulla.

Me suomalaiset olemme olemme pelanneet itsemme ulos näillä markkinoilla konsulttiyritysten omistuksen siirryttyä ulkomaille tai loputtua kokonaan. Löytyyköhän tästä maasta enää osaamista ja pääomaa vaikkapa kokonaan uuteen yritykseen? Tekoälykierros on nyt alkanut aineistojen prosessoinnissa ja isojen alueiden aineistojen tuottamiseen sopii erinomaisesti RIEGL VQ-1460, joka nähdään myös Saksan taivailla. Jos taas kiinnostaa erityisesti kaupunkialueiden ja miksei metsienkin laserskannaus hiukan erilaisella skannerilla, niin viime vuonna julkaistu RIEGL VQ-680 sopii erinomaisesti tuottamaan monipuolista mittausaineistoa kompleksisista kohteista. Sen avulla mitataan pystykohteita kuten julkisivuja normaaleja ilmalaserskannereita paremmin. Skannausmekanismin ansiosta voit mitata samanaikaisesti lentosuuntaan nähden 60° alueen eli viisi skannausprofiilia kerralla.

Kiinnostuitko? Meiltä löytyy lidarratkaisuja teollisuusmittauksesta isoihin ilmalaserskannereihin. Droneskannereita on myös useita, jos sinulla on luvat kunnossa.

p. +358 45 650 8585 / nordic (at) geocenter.fi

Vuoden 2023 loppumietteitä

Tänä vuonna blogia on kirjoiteltu harvakseltaan, mutta mielenkiintoisia tapahtumia ei kuitenkaan ole puuttunut. Vuotta 2023 ovat meillä hallinneet mobiili- ja maalaserskannaus, joista molemmista enemmän alla. RIEGL ei luonnollisesti ole unohtanut ilma- ja droonikategorioita, joissa molemmissa otetaan edelleenkin jatkuvasti teknisiä harppauksia.

Ilmalaserskannerien kategoriaan RIEGL lisäsi nyt peräti viisi samanaikaista profiilia mittaavan VQ-680 -skannerin. Jos nimi tuntuu tutulta, niin 680 oli aiemmin RIEGLin pitkään tuotannossa olleen LMS-sarjan ilmalaserskannerin nimessä.

RIEGL VZ-680 skanneri mittaa aikamoisen alan kerralla, koska myös menosuuntaan mitataan samanaikaisesti 5 profiilia 10 asteen välein.

Drooniskannerit eivät myöskään ole unohduksissa, mutta jatkuvasti muuttuvat lentomääräykset keskittävät toimintaa yhä harvempien toimijoiden käsiin. Kuten totesimme jo nykyisen droonihypen alkaessa yli 10 vuotta sitten, niin drooni on käytännössä lentävä pommi, eivätkä globaalit tapahtumat ole suinkaan muuttaneet tätä käsitystä. Lisäksi globaali ilmailulainsäädäntö ja kansainväliset pakotteet muokkaavat droonimarkkinaa myös tavalla, joka ei ole niin ongelmallista muissa tuotekategorioissamme.

Tänä vuonna RIEGL lisäsi droonikategoriaan muun muassa peräti 800 poikkileikkausta sekunnissa mittaavan VUX-18024 laserskannerin.

Kansainväliset pakotteet – nimenomaan Kiinan ja USAn välinen välillä – vaikuttavat muuten nykyään myös Lidareihin eli laserskannausteknologiaan. Kiinan joulukuun 21. päivä päivittämällä pakotelistalle esiintyy tarkemman kategorian lidarit (kulma- ja etäisyysmittauksen tarkkuus) useampaan otteeseen samoin kuin geodeettinen kartoitusteknologia mukaan lukien BeiDou-satelliittiteknologia. Media meillä ja muualla keskittyy lähinnä uutisoimaan Kiinan rajoittavan harvinaisten maametallien vientiä ja valmistusteknologiaa, mutta listalla on siis useita muitakin korkean teknologian alueita.

Mobiilimittaukset

Mutta nämä pakotteet eivät vaikuta meidän toimintaamme ja vuosien aikana olemme onnistuneet hyvin mobiililaserskannerien myynnissä Suomen pienillä markkinoilla. Kauppoja olemme tehneet myös Virossa ja Ruotsin markkinoilla. Onnistumisen takana on ollut oma panostuksemme näiden laitteiden käyttöön, silla harva asiakas ostaa sikaa säkissä. Totta kai osa asiakkaista on tutustunut laitteisiin jo maailmalla, mutta toiset taas tarvitsevat vakuutuksen laitteiden toiminnasta Suomessa. Omalla osaamisella varmistamme asiakkaillemme myös toimivan tuen sekä laitteiden että ohjelmistojen tarpeisiin.

Mobiilin tiemittauksen osalta oma oppimisemme on merkittävässä asemassa myynnin edistämisessä. Voimme opettaa ja tukea laitteiden käyttöä ihan eri tavalla kuin sellainen myyjä, joka toteaa että ”ota yhteyttä laitevalmistajaan jos sinulla on lisäkysymyksiä ja tarvitset tukea”. Isolla osalla teollisilla valmistajilla ei suinkaan ole täyden palvelun asiakastukea, vaan siihen käytetään paikallisosaamista eri puolella maailmaa eli maahantuojia.

Teiden mittauksessa olemme hämmästyttävää kyllä tehneet myös oikeita läpimurtoja mukaan lukien tien pinnan kuntomittausten onnistuminen. Tutkimuksen ja markkinoinnin perusteella voisi näet luulla, että laserskannaus/lidar-teknologioita käytettäisiin maailmalla jo rutiininomaisesti teiden kuntomittauksissa, mutta näin ei suinkaan ole. Tämä johtuu alan olemassa olevista standardeista ja siitä, että tietääksemme lähes joka maassa oikeasti tarkistetaan tuloksia. Pelkkä mittaajan tai laitevalmistajan sana ei riitä. Näin huomasimmekin saavuttaneemme aika harvinaisen kunnian, kun saimme RIEGL VMX-järjestelmillä hyväksyttyjä tuloksia vuoden 2019 ja 2022 Ruotsin tietutkimuslaitoksen VTI:n testeissä. Näissä jälkimmäisissä testeissä ruotsalaiset suorastaan kannustivat meitä toimittaessamme tuloksia. Syyn ymmärtää tutustuessaan VTI:N julkaisuihin, joissa vuosien mittaa Lidar-teknologioilla ei ole saavutettu standardien vaatimia tuloksia. Nyt aihe kiinnostaa maailmalla oikeasti.

Tarkoilla tiemittauksilla saadaan myös tarkistettu veden valumissuunta, lätäköityminen ja tietysti tien geometria.

Samaan johtopäätökseen päädyimme myös Ateenassa järjestetyssä tien päällystemittauksen työpajassa, jossa olimme ensimmäinen laserskannauksella tien useita kuntoparametrejä hyväksytysti tuottanut toimija. Maailmanlaajuisesti, vaikka otos ei tietenkään ole kattava. Mukana oli myös maailman johtava kolmiointitekniikalla päällysteitä mittaava amerikkalainen laitevalmistaja, joka esityksensä aluksi haukkui ”lidarit”, mutta joutui järkytyksekseen huomaavan tilanteen muuttuneen. RIEGL VMX-teknologian avulla olemme siis tehneet aikamoisen aluevaltauksen.

Samassa tapahtumassa mielenkiintoinen havainto oli myös se, ettei monellakaan valmistajalla ole tietotaitoa edes kahden vierekkäisen mittauksen eli vaikkapa vierekkäisten kaistojen tarkkaan yhdistämiseen. Aineiston ollessa sisäisesti huono, ei yhdistäminen tietysti ole edes mahdollista. Tämä sama aineistojen yhdistämisongelma pätee muuten myös useimmissa perinteisissä tien päällysteen kuntoa mittaavissa tekniikoissa, mikä näin maanmittarin kannalta tuntuu loppujen lopuksi aika erikoiselta. Mutta totuus on jälleen kerran tarua ihmeellisempää.

RIEGL VZ-600i

Vuotta 2023 on meidän osaltamme leimannut myös RIEGL VZ-600i staattisten skannerien esittelyjen ja markkinoinnin aloittaminen. Ottaen huomioon maalaserskannerien yli 25 vuotisen historian, niin edistystä on tapahtunut huomattavasti. RIEGL VZ-600i on mittauslaitteen lisäksi täysverinen tietokone, jolloin aineiston käsittely, keskinäinen yhdistäminen ja RTK-koordinaatistoon vieminen voidaan tehdä jo mittausten aikana. Kun skannausasemia syntyy keskimäärin 60 kappaletta tunnissa, niin isotkin kohteet voi mitata ja toimittaa 24 tunnin sisällä.

Ison katedraalin mittaukseen Saksassa kului noin 16 tuntia, joista enemmän aikaa kuluu paikasta toiseen liikkumiseen eikä itse mittaukseen.

Yksi RIEGL VZ-600i-laserskannerin mielenkiintoisista ominaisuuksista on kinemaattinen eli mobiilimittaus. Rieglin maalaserkeilaimia on jo kaksi vuosikymmentä voinut asentaa mobiilimittausjärjestelmän osaksi, mutta uusi VZ-600i ei tarvitse liikkuvaan mittaukseen mitään lisävarusteita. Skannerin sisäinen mittausohjelma tallentaa laserin, sisäisen inertianavigointiyksikön ja RTK-GNSS:n havainnot, jotka lasketaan automaattisesti valmiiksi, georeferoiduiksi pistepilviksi Rieglin omilla ohjelmilla. Skannerin voi asentaa mihin haluaa, mutta käytännössä mittaaja voi myös kulkea skanneri kädessä ja mitata 2D tai 3D -moodissa. Rieglin skannereihin on saatavilla myös ROS-ajurit, jos skannerin haluaa liittää osaksi robottimittausalustaa.

RIEGL VZ-600i mittaa myös erinomaisesti metrotunnelit.

RIEGL LMS-Z210 – ensimmäinen maalaserskanneri Suomessa?

Uusista maalaserskannereista pääsemmekin palaamaan maalaserskannauksen alkuun eli vuosituhannen vaihteeseen Suomessa. Tähän asti tämän tekstin kirjoittaja on kuvitellut ensimmäisten maalaserskannerien Suomessa olleen Cyrax ja Callidus -merkkiset laitteet. Cyraxin osti Maa ja Vesi Oy vuonna 1999/2000 ja samoihin aikoihin Heinosen Hannu toi maahan ensimmäisen Callidus-skannerin. Jos nimet ovat tuntemattomia, niin Leica osti myöhemmin Cyraxin ja Trimble puolestaan Calliduksen. Ensimmäinen julkaistu kaupallinen 3D-skanneri oli puolestaan ranskalainen Mensi jo vuonna 1992, mutta muut valmistajat ehtivät siis markkinoille vuonna 1998. Näin teki myös RIEGL, joka julkaisi LMS-Z210 -skannerin vuonna 1998.

Kuvassa oikealta vasemmalle RIEGL LMS-Z210 maalaserskanneri, tohtori Johannes Riegl sekä tohtori Andreas Ullrich.  Creative Commons Attribution-Share Alike 4.0 International lisenssi.

Näistä varhaisista skannereista on aina käyty epämääräistä keskustelua ja huhuja myös Riegleistä on liikkunut, mutta syksyllä allekirjoittaneelle vahvistui ensimmäisen Riegl-skannerin sijaintipaikka Suomessa. Skanneri tai oikeammin peräti kaksi skanneria on hankittu 1997/1998 ja näin ollen ne olisivat ensimmäiset maalaserskannerit Suomessa. Paljastan tässä vaiheessa, etteivät käyttäjät olleet maanmittareita, mutta kerron skannereista enemmän uuden vuoden puolella. Jos tämän kirjoituksen lukijoilla on vinkkejä vielä vanhemmista maalaserskannereista Suomesta ja niiden merkeistä/sijaintipaikoista, niin meille saa mielellään vinkata asiasta. Ota yhteyttä Ninaan, p. 045 128 7071 tai Nordic Geo Center Oy

Valmiina nousuun – RIEGLin uudet laserskannausratkaisut UAV-pohjaiseen tiedonkeruuseen

RIEGL GmbH lehdistötiedote

Uusimmilla tuotteillaan itävaltalainen RIEGL korostaa jälleen kerran uraauurtavaa asemaansa suorituskykyisten LiDAR-antureiden ja -järjestelmien toimittajana. Dronealan jatkuva kehitys edellyttää suorituskykyisiä ja mittauksiltaan tarkkoja laserskannereita, jotka voidaan integroida sekä kompakteihin moniroottorisiin että nopeisiin VTOL- tai kiinteäsiipisiin UAV-alustoihin.

RIEGL on tunnistanut trendin ja suunnannut tuotevalikoimansa tähän suuntaan. RIEGLille tyypillinen tarkkuus/toistotarkkuus ja monipisteominaisuus yhdistettynä pitkän matkan mittauksiin, laajaan näkökenttään, erittäin korkeisiin laserpulssien toistotaajuuksiin ja nopeimpiin linjanopeuksiin ovat käyttäjien menestyksen perusta. Nämä keskeiset ominaisuudet mahdollistavat ammattimaisen käytön suurimmilla mahdollisilla toimintakorkeuksilla, mikä johtaa mahdollisimman suureen aluepeittoon. Sekä kentällä oloaika että aineiston keruuaika lyhenevät merkittävästi, mikä alentaa kokonaiskustannuksia ja lisää turvallisuutta UAV-sovelluksissa. Samalla voidaan hankkia entistä tarkempia pistepilvitietoja, jotka kattavat koko alueen. Tämä lisää hankkeessa käytettävän alustan joustavuutta ja ennen kaikkea tehokkuutta.

Lyhyesti sanottuna: RIEGLin suorituskykyiset anturit ovat optimaalinen työkalu ammattimaisille palveluntarjoajille tarkoissa dronella tehtävissä mittauksista.

RIEGLin uusinta kehitystä UAS-pohjaisessa laserkeilauksessa esitellään INTERGEO 2023 -tapahtumassa Berliinissä.

RIEGL VUX-18024
– Kevyt ja monipuolinen UAV LiDAR -anturi nopeisiin maanmittausoperaatioihin

Uusi RIEGL VUX-18024 tarjoaa laajan, 75 asteen näkökentän ja erittäin korkean, jopa 2,4 MHz:n pulssin toistotaajuuden. Nämä ominaisuudet yhdessä entistä nopeamman skannausnopeuden (jopa 800 profiilia sekunnissa) kanssa tekevät siitä erinomaisesti nopeisiin mittaustehtäviin soveltuvan skannerin. Nopeassa mittauksessa on myös mahdollista saavuttaa optimaalinen profiilien ja pisteiden jakauma eli tasainen pistekuvio.

Tyypillisiä sovelluksia ovat kriittisen infrastruktuurin, kuten sähkölinjojen, rautateiden, putkistojen ja kiitoteiden kartoitus sekä seuranta. RIEGL VUX-18024 tarjoaa mekaaniset ja sähköiset liitännät IMU/GNSS-integraatiota ja jopa viittä ulkoista kameraa varten. Sen muoto vastaa VUX-16023:n muotoa, mikä helpottaa kokonaisuuden suunnittelua ja asennusta. Sujuvaa ja suoraviivaista tietojen tallentamista varten käytettävissä on sisäinen SSD-muisti, jonka tallennuskapasiteetti on 2 Tt, ja irrotettava CFast-muistikortti.

RIEGL VUX-18024 täydentää edelleen RIEGLin jo hyväksi havaittuja VUX-12023-, VUX-16023– ja VUX-24024-sarjoja. Se on saatavana sekä itse asennettavana skannausjärjestelmänä tai useina erilaisina käyttövalmiina täysin integroituina laserkeilausjärjestelmäkokoon-panoina IMU/GNSS-järjestelmän ja valinnaisten kameroiden kanssa. Jos integrointikokemusta ei ole, niin käyttövalmis järjestelmä on suositeltava vaihtoehto.

Lisätietoja: RIEGL VUX-18024

RIEGL VUX-24024
– Kevyt drone/ilma-LiDAR -anturi, jossa on parannettu skannaussuorituskyky

RIEGL VUX-24024 on uusi parannettu versio suositusta RIEGL VUX-240 -mallista, jossa on nyt korkeammat pulssin toistotaajuudet ja nopeampi skannausnopeus. Parantunut suorituskyky nopeuttaa entisestään kenttätoimintaa ja parantaa työnkulun tehokkuutta. Laaja 75 asteen näkökenttä ja erittäin nopea, jopa 2,4 MHz:n tiedonkeruunopeus, joka johtaa jopa 2 miljoonaan mittaukseen sekunnissa, tekevät anturista täydellisesti sopivan suurten pistetiheyksien sovelluksiin, kuten voimajohtojen, ratojen ja putkistojen tarkastukseen. Sen nopeutunut skannausnopeus, jopa 600 viivaa sekunnissa, mahdollistaa toiminnan paitsi nopeasti lentävistä UAV:istä myös helikoptereista, gyrokoptereista ja muista miehitetyistä ilma-aluksista jopa 4 700 jalan lentokorkeudessa.

Mekaaniset ja sähköiset liitännät mahdollistavat IMU/GNSS-järjestelmän ja jopa 4 kameran valinnaisen integroinnin. Tiedot voidaan tallentaa joko sisäiseen 2 Teratavun SSD-muistiin tai irrotettavalle CFAST-muistikortille, joka mahdollistaa nopean tiedonsiirron tietokoneeseen.

Lisätietoja: RIEGL VUX-24024

RIEGL VUX-24024: nyt parannettu suorituskyky korkean pistetiheyden sovelluksia varten

RIEGL miniVUX-Sarja
– Nyt yhdessä RiLOCin, aloitustason IMU/GNSS-järjestelmän kanssa

RIEGL miniVUX-1UAV ja miniVUX-3UAV LiDAR-anturin itsenäisten versioiden lisäksi RIEGL tarjoaa myös IMU/GNSS-järjestelmillä ja kameroilla varustettuja järjestelmäratkaisuja.

Tämän vuoden uutuus on RIEGL RiLOC, joka on paikantaa ja orientoi RIEGLin kinemaattisesti mitatut LiDAR-aineistot referenssikoordinaatistoon. RiLOC on muodoltaan pieni ja kevyt, täysin integroitu osajärjestelmä, joka kiinnitetään suoraan miniVUX-1UAV:n tai miniVUX-3UAV:n koteloon. Järjestelmän kokonaispaino on vain 1,75 kg.

RiLOC koostuu yhdestä tai kahdesta GNSS-vastaanottimesta, inertiamittausyksiköstä ja tiedonkeruuohjaimesta sekä siihen liittyvästä ohjelmistosta. Se hyödyntää tiukasti kytkettyä inertia-, GNSS- ja LiDAR-havaintoja aineiston käsittelyssä ja tarjoaa uuden, lähtötason vaihtoehdon RIEGLin kustannustehokkaisiin miehittämättömiin LiDAR järjestelmäratkaisuihin.

Lisätietoa: RIEGL RiLOC

RiLOC, RIEGLin IMU/GNSS-ratkaisu, integroituna RIEGL miniVUX-3UAV-skanneriin.

Suomen edustus Nordic Geo Center Oy

Tietoja Nordic Geo Center Oy:stä

Nordic Geo Center Oy on tuonut maahan geodeettisia laserskannereita vuodesta 2005 alkaen. Henkilöstön maahantuontikokemusta uusimman maanmittausteknologian maahantuojana ja kehittäjänä on kertynyt jo useammalta vuosikymmeneltä. Taustamme on maanmittauksessa, mutta asiakaskuntamme toimii kymmenillä eri aloilla teollisuusmittauksista rakennuksilla ja metsistä kulttuuriperintöön. Mittaukset pysyvät periaatteeltaan samoina, mutta käytettävät ohjelmistot vaihtelevat alojen mukaan. Itävaltalaisen RIEGL GmbH:n auktorisoimana maahantuojan olemme toimineet vuodesta 2008 alkaen Suomessa, Virossa ja Ruotsissa.

Lisätietoja https://www.geocenter.fi

Tietoja RIEGListä

RIEGLillä on yli 40 vuoden kokemus laseretäisyysmittareiden, etäisyysmittareiden sekä LiDAR-antureiden ja -järjestelmien tutkimuksesta, kehityksestä ja tuotannosta. RIEGL tarjoaa todistetusti innovatiivisia 3D-järjestelmiä.

Yhdistämällä RIEGLin huippuluokan laitteistot maanpäälliseen, teolliseen, liikkuvaan, ilma-aluksen, batymetriseen ja UAV-pohjaiseen laserkeilaukseen sekä asianmukaiset, yhtä innovatiiviset RIEGL-ohjelmistopaketit tiedonkeruuseen ja -käsittelyyn saadaan tehokkaita ratkaisuja monille maanmittauksen sovellusalueille.

RIEGL on aina pyrkinyt tarjoamaan kaikkien tuotteidensa ja palveluidensa parasta suorituskykyä, laatua, luotettavuutta ja pitkäikäisyyttä, ja sovellettavien kansainvälisten standardien tiukka noudattaminen on ensisijainen tavoite.

Lisätietoja www.riegl.com

Riegl VZ-600i – etäisyysmittauksen testi

Saimme ensimmäisen Riegl VZ-600i-esittelyskannerimme sopivasti lomakauden alussa, joten näin ehdimme tutustumaan skanneriin ensin itse ennen tositoimia. Ensimmäiseksi suunnistimme toimiston lähellä sijaitsevaan rantaan, jossa on helppo kokeilla skannerin mittausetäisyyksiä. Lähistöllä on kalliorantaa ja jonkin verran rakennuksia eri suunnissa sekä uusimpana kohteena rakenteilla olevat kruunusillat. Mittauspaikkaa ja sen ympäristöä on hahmoteltu alla olevaan karttaan ja vieressä näkyy skannerin mittaamaa aineistoa.

Riegl lupaa skannerille mittausetäisyydeksi 1000m, kun käytetään hitainta 100 kHz:in mittausmoodia ja kohde on > 90% heijastava. Käytännössä jotain hyvin vaaleaa ja kirkasta kuten valkoinen marmori. Kun avasimme skannausaineiston tietokoneella, tarkastelimme aineistoa hyvin hämmästyneinä: skanneri oli mitannut yhtä kalasataman torneista 1800 m etäisyydeltä! Mittausetäisyksien suhteen Riegl on aina antanut konservatiivisen arvoja teknisissä tiedoissa, mutta 1800 m on kyllä huimasti yli odotuksien. Millähän materiaalilla tuo kyseinen tornitalo on päällystetty? Suhteellisen harvalla resoluutiolla mitattuna talon julkisivu näyttää tältä:

Epäilemme talon olevan Patrizia-torni, jonka julkisivu on valkoisempi kuin naapuriensa.

Kruunusiltojen rakennustyömaa näkyy aineistossa myös hyvin etäisyyden vaihdellessa 680 m ja runsaan 1000 m välillä.

Mitä tämä tieto tarkoittaa käyttäjille? Käytännössä tummemmat kohteet saa mitattua varsin kaukaa, joten esimerkiksi korkeat savupiiput, mastot, tummat katot ja tuulivoimalat ovat helppo urakka tälle skannerille. Skannerin mittaustarkkuus lupaa myös hyvää – toistotarkkuudeksi luvataan peräti 1 mm high precision -mittausmoodilla mitattuna (1 sigma @100 m).

Skannerin lähiympäristö tallentui luonnollisesti suuremmalla resoluutiolla ja alla olevassa kuvassa näkyy Wihurin palatsi runsaat 175 m skannauspaikasta.

Pitkä odotuksemme on näin loppunut kun ensimmäinen Riegl VZ-600i on saatu Suomeen. Käytännön suorituskyvyn testaaminen on toisaalta vasta alkanut näiden etäisyysmittaustestien myötä. Odotammekin mielenkiinnolla, kuinka kiinnostavia mittaushaasteita asiakkaillamme on tälle skannerille esittää. Skannerin teknisiin tietoihin ja suorituskykyyn voi tutustua täällä.

Lähes samaan aikaan skannerin kanssa saapuivat pienet miniatyyriskannerit eli USB-C -muistit. Syksyä on näin mukava odotella! Ole yhteyksissä, jos haluat silloin skannerin demon.

Case study: Jyväskylän Paviljongin laserskannaus FinnMateria 2022 -messuilla

Osallistuimme lokakuussa 2022 FinnMateria-messuilla Jyväskylän Paviljongissa. Otimme mukaan esittelyskannerimme RIEGL VZ400i -maalaserskannerin. Suoritimme torstaiaamuna skannauksen viidestä asemasta joista kunkin skannaaminen kesti noin minuutin. Kokonaisaika alle kymmenen minuuttia. Skannerin laser on silmäturvallinen joten skannauksen voi tehdä vaikka paikalla on ihmisiä.

VZ400i skannaus taajuus on 1,2MHz ja se kerää maksimissaan noin kaksi miljoona pistettä sekunnissa jopa 800 metrin etäisyydeltä. Skannerin keilauskulma on pystysuuntaan 100° ja 360° skannerin pyöriessä ympäri.

Skannerissa on sisäinen automaattinen rekisteröinti joka yhdistää eri skannausasemien pistepilvet toisiinsa käyttäen pistepilvien yhteisiä piirteitä joten erillisiä signaalimerkintöjä ei tarvitse käyttää. Skannauksen jälkeen pisteet ladattiin RiScanPro-ohjelmaan jossa tarkistettiin automaattisen rekisteröinnin tulos ja suoritettiin automaattinen hienosäätö.

Vaikka skannaukset tehtiin pienellä noin 15 metrin alueella tallentui pistepilviin lähes koko paviljonki, varsinkin yläpuoliset rakenteet kuten katto, tukirakenteet ja ilmastointikanavat.

Ohjelmalla voidaan myös rajata näkyviin vain haluttu tilavuus pistepilvestä. Pistepilvessä on sisäisesti millimetritarkkuus ja siitä voidaan mitata haluttuja etäisyyksiä ja kokoja.

Mikäli olisi haluttu mitata koko Jyväskylän Paviljonki messujen aikana olisi tarvittu useita lisäskannauksia. Tyhjän Paviljongin B-hallin mittaukseen suurella tarkkuudella riittäisi arviolta 20 asemaa.

7-in-1 – RIEGL VZ-600i 2D/3D-laserskanneri

Viime syksynä Essenin Intergeossa edustamamme Riegl Laser Measurement Systems esitteli pitkästä aikaa uuden skannerin, RIEGL VZ-600i, ns. maalaserskannerien kategoriaan. Kuten edeltäjänsäkin, tämä skanneri on paljon muutakin eli todella monipuolinen ja monikäyttöinen mittauslaite. Tätä monipuolisuutta esitelläksemme, teimme alla olevan kuvan hahmottamaan skannerin ominaisuuksia.

RIEGL VZ-600i laserskannerin ominaisuuksia. Kuva: Nordic Geo Center Oy

Asiakaskunta on toivonut Riegliltä uutta maalaserskanneria jo pitkään, mutta Rieglin tekninen kehitys on pitkään nähnyt enemmän mahdollisuuksia muilla laitesektoreilla kuin varsin kilpaillussa maalaserskanneriluokassa. Lyhyen matkan skannereissa on näet enemmän valinnan varaa ja ajateltiin, että kännykkäskannerit kuten iPhone valtaavat pian markkinat. No näin ei suinkaan käynyt, koska monessa teollisessa sovelluksessa tarvitaan parempaa tarkkuutta kuin kännyköillä edelleenkään päästään ja lisäksi jatkuvasti ulkona/teollisessa ympäristössä käytettävän laitteen tarvitsee olla rakenteeltaan lujempi ja luotettavampi. Uuden skannerin IP-luokitus on luonnollisesti jo tutusti 64.

Näin ollen vuonna 2023 saamme myyntiin uuden sukupolven laserskannerin, jossa Riegl on luopunut perinteisestä sylinterin muotoisesta rungosta ja keventänyt skannerin 6 kg painoiseksi. Tästä huolimatta skannerissa on integroituna monia lisäsensoreita kuten kolme kameraa, GNSS, kolmiakselinen kiihtyvyysanturi, kolmiakselinen gyroskooppi, kolmiakselinen magnetometri ja barometri. Tämän lisäksi skannerissa on tuttuun tapaan liitännät myös ulkoisille kameroille ja GNSS-antennille. Sisäistä muistia on 1 TB ja lisäksi löytyy CF-express korttipaikka 480 gigatavulle. Kuten edeltäjänsä, skanneri voidaan yhdistää suoraan pilvipalveluihin kuten Microsoft Azureen, Amazon AWS -pilveen jne. ja skannausasemat voidaan yhdistää keskenään suoraan skannerissa siihen varatussa erillisessä prosessointitietokoneessa.

Kuva: Riegl

Käyttäjät voivat ohjelmoida skannerin sisään omia sovelluksiaan appien muodossa tai hyödyntää valmistajan omia erikoissovelluksia. Näistä olemme jo aiemmin tutustuneet muun muassa monitorointiin ja robottiappiin, mutta nyt esitellään uutuutena skannerin sisäinen kinemaattinen sovellus.

Kuva: Riegl

Kinemaattinen tarkoittaa mobiilia eli liikkuvaa mittausta ja tällä skannerilla sitä voi tehdä kahdella eri tavalla. Näistä ensimmäinen tapahtuu ilman mitään lisävarusteita käynnistämällä skannerissa oleva sovellus (kuva yllä). Ja eikun menoksi. Kuulostaa helpolta ja niinhän se käyttäjälle on, mutta järjellisen tuloksen aikaansaamiseksi Riegl on tehnyt monivuotisen tutkimusprojektin yhdessä Wienin teknillisen yliopiston geodeetikkojen kanssa. Lopputulos lasketaan myös skannerin sisällä tai tietokoneella RiScan Pro-ohjelmassa.

Kuvassa Riegl VZ-600i-skannerin kinemaattisella appilla mitattua pistepilveä. Talon korkeus on 50 m. Kuva: Riegl

Toinen tapa käyttää tätä skanneria mobiilisti on sama kuin muillakin RIEGLin skannereilla eli yhdistetään se tarkempaan GNSS-inertianavigointiyksikköön, jolloin myös lopputuloksesta saadaan tarkempi. Skannerin sisäinen IMU on valittu ensisijaisesti muihin skannerin toimintoihin eikä edusta alansa huippua. Onhan jopa drone-sektorillakin vihdoin havaittu, että hyvää mittausaineistoa saadaan luotettavimmin taktisen luokan inertiasensorilla. Paremman luokan inertiayksikkö mahdollistaa myös nopeamman kulkuvauhdin, jota tämän skannerin 420 profiilin sekunnissa mittausnopeus myös tukee.

Riegl VZ-i sarjan skannerien sovellusalueita.

Yhteenvetona voimme todeta, että Riegl Laser Measurement Systems tuo vuonna 2023 markkinoille uudenlaisen, monipuolisen ja vain 6 kg painavan 3D-laserskannerin. Se sopii monille eri käyttäjäryhmille ja monenlaisiin eri tarkoituksiin, joten Rieglin aallonmuodon analysointi -teknologiaan tyytyväiset käyttäjät saavat toivomansa uutuuden.

Tuotannosta näitä skannereita alkaa tulla tämän vuoden ensimmäisellä kvartaalilla ja toivomme saavamme esittelylaitteen viimeistään huhtikuussa. Ota meihin yhteyttä, jos olet kiinnostunut skannerista tai haluat sen esittelyn nyt/myöhemmin keväällä.

Geodesian alamäki läntisessä maailmassa &Kiina

Rakennus- ja infrasektorin käytännön ongelmat Suomessa

Tänäkin vuonna geodesian osaaminen noussut on jälleen noussut keskusteluihin monissa yhteyksissä, kun projektit eivät suju ihan niin kuin pitäisi. Meille kantautuu rakennus- ja infrasektorilla jatkuvaa nahinaa siitä, kuka on mitannut väärin kun virheistä aiheutuneille kustannuksille entistään maksajaa. Olemme olleet myös mukana selvittämässä isojen infrakohteiden virheitä. Nyt joulukuussa vastaan tuli vaihteeksi vastaan rakennussektorin kohde, jossa kyse on niinkin pienestä asiasta kuin koordinaatistojen ymmärtämisestä, mutta virheet ovat kulminoituneet yli sadan tuhannen euron lisäkustannuksiin tässä vaiheessa. Isoissa infraprojekteissa kerrannaisvaikutukset lasketaan miljoonissa.

Rakennusteollisuuden tuottama lisäarvo vuodessa vastaa noin 15 % bruttokansantuotteesta ja kiinteistöt – sekä nimenomaan rakennettu infra -muodostavan ison osan kansallisvarallisuudestamme. Sektori on siis merkittävä osa suomalaista yhteiskuntaa. Näin ollen alan ongelmakohtien selvittämisen luulisi kiinnostavan monia tahoja mukaan lukien koulutus.

Geodesian kriisi Yhdysvalloissa

Tässä mielessä on ollut mielenkiintoista seurata geodesian kriisin keskustelua USAssa. Geodesian osaajia on enää vähän, mutta tarpeet senkun kasvavat. Geodesia tarvitsee siis puhtaan geodesian sekä sitä soveltavien alojen kuten rakennusteollisuuden ongelmat ymmärtäviä osaajia kehittyäkseen. Tammikuussa 2022 julkaistu raportti Geodesy in Crisis kuvaa valaisevasti tilannetta esimerkiksi eri geodesiaa hyödyntävissä tutkimuslaitoksissa, joissa ei enää ole töissä edes geodesian tohtoreita. Myös USAn puolustusteollisuudessa ja puolustusvoimissa on sama tilanne. Kuvaavaa on, että puolustusvoimien alaisessa National Geospatial Intelligence Agencyssa on nykyään noin 2000 GIS-erikoisosaajaa, mutta vain kaksi geodesian tohtoria, joista toinen on lähellä eläkeikää.

Käytännössä rahoituksen alamäki näyttää alkaneen 1990-luvulla samaan aikaan, kun kylmä sota loppui. Nimenomaan kouluttajien puuttumisen takia USAssa on puolestaan paljon nuoria paikkatieto- ja GIS-insinöörejä, joiden oman ydinalan osaaminen on heikolla tieteellisellä ja käytännön osaamisen pohjalla. Samaan aikaan geodesiasta riippuvaiset geospatiaaliset alat ovat vain kasvaneet ja USAssa on muodostunut alla olevan kuvan mukainen kärjellään seisova pyramidi. Geodesia kannattaa yli 1000 miljardin USAn dollarin teollisuutta.

Tämä kriisi on havaittu ja tunnistettu kunnolla muutama vuosi sitten ja raportissa kuvataan muutoksia ja syitä tapahtumiin. Yksi perussyistä lienee geodesian muuttuminen näkymättömäksi – se on kaikkialla, mutta jopa alan sisällä on sen tunnistamisvaikeuksia. Suomessa on muuten samankaltainen tilanne.

Geodesian kukoistus Kiinassa

Samaan aikaan Kiinassa koko 2000-luku geodesiaan on panostettu valtavasti niin, että siellä on nykyään noin 150 oppilaitosta, joissa on geodesian ja kartoituksen perus- ja jatko-opinto-ohjelmia. Raportin tekijät arvioivat, että vuosittain ohjelmiin otetaan 9000–12500 opiskelijaa. Kiinan kasvaneen koulutustarjonnan myötä Kiina on nykyään geodesian koulutuksen ykkösmaa ja pelkästään Wuhanin yliopistossa ja tutkimuskeskuksissa on enemmän geodesian maisteriopiskelijoita ja tohtorikoulutettavia kuin koko USAssa. Koko maailmaa ajatellen Kiinassa on nykyään enemmän koulutettuja geodeetteja kuin muualla maailmassa yhteensä. Myös tutkimusjulkaisuissa Kiina on mennyt ohitse sekä määrällisesti että laadullisesti ja nyt lisääntyy vain kiinaksi kirjoitettujen julkaisujen määrä. Kiinan virallisen politiikan mukaan tieteiden saavutuksia ei halutakaan enää jakaa kaikkien kanssa, vaan ne pidetään kielimuurin takana. Kyseessä ovat näet myös kaupalliset edut. Tämän tekstin kirjoittaja huomasi saman taktiikan jo vuosia sitten seuratessaan kiinalaisten julkaisuja oman GNSS-inertia-laskennan kehittämisestä. Aluksi projektia ja sen kehittämistä esiteltiin, mutta sitten julkaisut kansainvälisillä alustoilla loppuivat vaikka projekti jatkui.

Valtavan rahoitus- ja kehitystyön tuloksena geodesian rahoitus Kiinan eri tutkimuslaitoksissa ja yliopistoissa on huomattavasti paremmalla tasolla kuin muualla maailmassa. Koska osaajia on, niin valtiolla on varaa rahoittaa useampia saman ongelmakentän parissa työskenteleviä tutkimusryhmiä, jolloin todennäköisyys ratkaisujen löytämiseen on tietysti suurempi. Raportin kirjoittajien mukaan esimerkiksi BeiDou (Compass) on vähintään yhtä hyvä järjestelmä kuin GPS ja osin se on jopa parempi. Sillä on nykyään myös maailmanlaajuisesti suurempi määrä käyttäjiä kuin GPS:llä. Geodesian laaja osaaminen on mahdollistanut myös esimerkiksi Kiinan kuuprojektin, autonomisten ajoneuvojen kehittämisen sekä vaativat ja tarkkuutta vaativat isot infrastruktuuriprojektit. Kaukana ovat ajat, jolloin Suomen 1950-luvulla siteeratuin tiedemies V. A. Heiskanen koulutti salaa geodesiaa myös NASAn kuuprojektin tiedemiehille Ohion Kolumbuksessa.

Raportissa viitataan myös Eurooppaan ja todetaan geodesian koulutuksen olevan täällä paremmassa tilassa. Käytännössä viitataan vain tiettyihin maihin kuten Saksaan ja samalla todetaan Saksankin osaamisen nojautuvan tänä päivänä hyvin paljon Kiinaan. Esimerkiksi Saksan geotieteiden tutkimuskeskuksen avaruusgeodesian osastolla noin puolet tohtoreista on saanut koulutuksensa Kiinassa.

Suomen tilanne

Millainen tilanne on sitten Suomessa vuoden 2023 kynnyksellä? Geodesian kriisi havaittiin täällä jo varhain, joten meillä on toteutettu korjaavia toimenpiteitä. Markku Poutanen kirjoitti esimerkiksi seuraavasti Maankäytön numerossa 3/2007:

Yhtenä syynä lienee se, että geodesian menetelmiä ja geodeettisten havaintoverkkojen ja pysyvien, stabiilien vertausjärjestelmien merkitystä ei tunneta. Tutkimuksen lisäksi yhteiskunnallisten tarpeiden huomioonottaminen ja geodeettisten menetelmien tunnetuksi tekeminen ovat lähivuosien suuria haasteita.

sekä

Viime aikojen muotina on ollut koko geodesia-sanan hävittäminen niin alan laitosten kuin geodesian opetuksen nimistä. Miksi? Tilalle ovat tulleet sellaiset mitään tarkoittamattomat sanahirviöt kuin geomatiikka. Kun alan opiskelijat on menetetty samassa myllerryksessä, on koko tarpeeton geodesian opetuskin voitu lakkauttaa. Mistä löytyvät tulevaisuuden osaajat ja kuka kykenee jatkossa luomaan ja ylläpitämään koordinaattijärjestelmiä?

Päättäjiin kohdistetun tiedottamisen myötä Suomessa on löytynyt rahoitusta muun muassa geodeettisen perusinfrastruktuurin ylläpitämiseen ja uudistamiseen. Tietoisuuden kohottamiseksi on julkaistu myös visio ja strategia geodesialle Suomessa 2017-2026, jossa käydään myös läpi heikkouksia mukaan lukien alan koulutus Suomessa. Aalto-yliopistossa on saatu pidettyä geodesian apulaisprofessori sekä työelämäprofessori. Kaikeksi onneksi myös geodesia-nimike on palautettu arvoonsa, sillä maailmanlaajuinen geomatiikkaseikkailu ei tehnyt geodesialle kuin hallaa (tätä käsitellään myös USAn raportissa).

Suomen geodeettisen vision ja strategian päämäärien viimeinen kohta on ”metrologisesti luotettavat ja tarkat koordinaatti-, korkeus- ja painovoimajärjestelmät tarjoavat helposti saatavilla olevat paikkatiedot kaikkien käytössä olevien sovellusten tarpeisiin”. Koko raportti käsittelee siis pääosin ylätason rakenteita ja toimenpiteitä, kun taas sovellettu geodesia eri aloilla ei oikeastaan esiinny siinä laisinkaan. Geodesian infrastruktuuri tuotetaan siis kaikkien sovellusten tarpeisiin, mitä oikeastaan heijastaa kuvan 1 pyramidi, ja pohjalta ylöspäin siirryttäessä sen nimi näytetään muutettavan meillä paikkatiedoksi.

Sovellusaloja ja tekijöitä on paljon, mutta varsinaista geodesian osaamista on muilla aloilla tyypillisesti vähän. Teoriassa koulutus ja tutkimus heijastavat tietämystä muille aloille, mutta koska geodesian koulutus on sen ydinalalla heikoilla kantamilla, niin ei ole paljoakaan mitä heijastaa. Tai se mitä on, suuntautuu lähinnä avaruusgeodesiaan. Valitettavasti toinen tuore strategia, Kansallinen paikkatietostrategia 2022-2025 ei vastaa millään tavalla myöskään osaamisen haasteisiin käytännössä. On kyllä keksitty toistaa aikakautemme mantraa osaajien maahantuonnista ulkomailta:

”Maahamme on saatava ulkomaisia alan osaajia ja lisättävä muiden alojen asiantuntijoiden paikkatieto-osaamista. Paikkatieto-alan osaajien palkkauksen on oltava tasolla, joka motivoi työnhakijoita tilanteessa, jossa IT-osaajista on pulaa.”

No, tiedämme missä maassa ne oikeat osaajat nykyään ovat, joten ilmeisesti rekrytointi Kiinasta käy kuumana.

Lopuksi

Toimiva geodeettinen infrastruktuuri ei siis riitä siihen, että esimerkiksi rakennusalalla saavutettaisiin parempaa laatua ja vältyttäisiin isoilta virheiltä. Geodesian tietotaidon pitäisi heijastua paremmin sekä kartoittajien ja maanmittaajien koulutukseen, jotta he osaisivat soveltaa sitä onnistuneesti käytännön projekteissa – monet toimivat rakennusalalla. Toisaalta käytännön tason toimijoiden osaaminen ja ymmärrys ei riitä, koska geodeettinen osaaminen on nykyään olematonta myös ylätasoillä – sekä tilaaja –että suunnitteluorganisaatioissa. Esimerkiksi merkittäviä mittausprojekteja tilaavilla ja hallinnoivilla yksityisillä ja julkisilla organisaatioilla ei tyypillisesti ole yhtään geodesian osaajaa talossa. GIS-analyytikolla ei ole riittävää osaamista ja IT-ammattilainen ei normaalisti tiedä mittauksesta mitään. Saatava lopputulos on usein sen mukaista. Koska ongelmatilanteita ja rahallisia korvauksia ei ratkota julkisuudessa, niin tietoisuus ongelmista ei leviä. Tilinpidossa kustannukset jakautuvat eri kustannuspaikoille, joten ongelmien rahallista vuosikustannusta Suomessa ei tiedä kukaan.

Nahina jatkuu. Näihin hiukan synkkiin ajatuksiin päätämme vuoden 2022 kirjoitukset. Tästä huolimatta toivotamme kaikille lukijoillemme Valoisaa Uutta Vuotta 2023!

Vaalimaalle ja takaisin – skannaten tietysti

Viime aikojen mielenkiintoisimpia projektejamme on ollut valtatie 7:n edestakainen mittaus Helsingistä Vaalimaalle ja takaisin. Vaikka tällaisen moottoritien mittaaminen liikkuvalla kartoituksella on varsin tylsää, niin vastapainoksi aineistoa on aina mielenkiintoista tarkastella tietokoneella. Alla esittelemme muutamia kuvakaappauksia aineistosta.

Mutta aloitetaan videolla paikan päältä eli mittausautosta. Tässä olemme vielä alkumatkalla Sipoon kohdalla.

Varsinainen mittaus alkoi Kehä 1:n Lahdentien liittymästä ja videon aloituskuvassa olemme juuri siirtymässä Kotkan suuntaan. Kuvassa näkyy myös selkeä raja uuden asfaltin (sininen) ja vanhan välillä. Visualisoinnin väriskaala kertoo uuden, tumman päällysteen heijastavan valoa eli mittaussädettä selkeästi huonommin kuin vanhan päällysteen.

Koko reitti merkittynä kartalle näyttää seuraavalta:

Matkan varrella kulkee sähkölinjoja useassa paikassa, mutta tämä pylväs löytyy heti matkan alkuvaiheesta.

Tien reunassa kulkiessa huomio kiinnittyi ajaessakin reunamaalauksiin. Paikoin ne olivat ihmeen kiemurteleviä suoran viivan sijaan. Kautta tiemaalausten aikauden hyvä kysymys on aina ollut, sijaitsevat maalaukset suunnitellulla kohdalla tietä. Tieto on merkittävä haluttaessa ajaa oikeaa (=turvallista) ajolinjaa tiegeometrian suhteen. Robottiautojen myötä kysymys on noussut entistä ajankohtaisemmaksi, sillä autojen lähipaikannus nojautuu tyypillisesti tiemaalauksiin.

Pistepilviä voi visualisoida eri tavoin saaden näkyviin erilaisia ilmiöitä vaikkapa tien pinnalla. Alla olevasta kuvasta huomaamme, että tien pinta on ollut hieman kostea (vihertävän sininen väri) mittauksen aikana, mutta menosuunnassa oikeanpuoleinen kaista on jo ehtinyt kuivahtaa muuta tieosuutta enemmän. Reunakaistan pinta heijastelee kuivallakin kelillä hieman eri tavalla kuin ohituskaista, koska se on yleensä hieman kuluneempi suurempien liikennemäärien takia.

Alla olevassa kuvassa näemme myös, että tiemaalaukset saattavat heijastaa valoa eri tavalla. Vertaa vasenta ja oikeaa reunaa. Meidän silmissämme ja värivalokuvassa maaliviivat näyttävät kuitenkin ihan samalta valkoiselta. Näin ollen etäisyyskalibroidusta laserskannausaineistosta voidaan myös laskea, heijastavatko tiemaalaukset ja liikennemerkit valoa normien mukaisesti. Maailmalla tätä asiaa on jo selvitelty tutkimuksissa.

Seuraavaksi saavuimme Ahvenkoskelle, jossa dokumentoimme myös paikallisia sillankaaria. Runsaan sadan metrin päästä moottoritiestä sijaitsee vuonna 1965 rakennettu vanhempi silta, joka näkyy kuvan keskiosassa.

Etukäteen olimme erityisesti ajatelleet skannata matkan varrella olevia hienoja kallioleikkauksia. Niistä näimme yhden jo varsin homogeenisesta kivestä koostuvan ylempänä, mutta alakuvissa on myös mielenkiintoisia yksityiskohtia. Ensimmäisessä kuvassa nähdään heijastusten avulla kalliossa kulkevia eri kivilajien juonteita. Nämä ohuet juonteet ovat selkeästi valoa heijastavampia (keltaisia) kuin ympäröivä kivi. Toisessa kuvassa näkyy keskellä kuvaa hieno vaakatasossa kulkeva lusto. Lustot kiinnostavat geologeja lähes poikkeuksetta, koska ne kertovat paljon kiven käyttäytymisestä esimerkiksi louhinnassa.

Tiemittauksissa risteykset ovat aina mielenkiintoisia paikkoja. Tieristeyksien harrastajat jakelevat ilmakuvia maailman mitä monimuotoisimmista risteyksistä, joten tässä meidän vaillinainen lisäyksemme tähän kategoriaan. Siltakylässä sijaitseva liittymä on nimittäin mitattu vain keskeltä tietä, jolloin ylös nousevat ja alas laskevat rampit näkyvät aineistossa vain heikosti. Tämä liittymä taitaa olla mittausalueen muodoltaan symmetrisin alue.

Seuraavaksi voimmekin tarkastella vihersiltoja, joita valtatie 7:ltä löytyy useampia. Ensimmäinen kuva esittää vihersiltaa visualisoituna laitteistomme kumpikin skanneri erikseen ja kaksi ajolinjaa päällekäin. Aineiston prosessoinnissa käytämme tätä visualisointitapaa eniten, sillä sen avulla näemme onko aineistossa kaikki kohdallaan. Toinen kuva esittää Lelun lähellä sijaitsevaa vihersiltaa, joka kuvan esittämällä tavalla jatkuu hieman pidemmälle. Kaaria on loppujen lopuksi kolme kappaletta.

Lopuksi pääsimme Vaalimaalle, jossa selvitimme uuden Rajamarketin rakennuksen pituuden. Se on lähes 300 m pitkä! Mittausta suunnitellessa tämän rakennuksen koko kieltämättä askarrutti mieltämme kallioleikkausten ohella. Mutta nyt kaikkiin kysymyksiimme on vastattu. Paluumatkan skannasimme koko tien toiseen suuntaan ja lopetimme mittauksen saavuttaessa Kehä 1:lle.

Mihin tällaista aineistoa voi käyttää? No kaikenlaisen suunnittelun pohjana tietysti. Tiesuunnittelijat tarvitsevat tiealueen lisäksi kaikki rampit, joten niiltä osin aineisto on puutteellinen. Liikennemerkit, portaalit ja muut tiekalusteet aineistossa näkyvät puolestaan selkeästi samoin kuin maalaukset. Liikennemerkkien ja maalausten heijastuvuuden arviointi on myös mahdollista. Maailmalla suurempi käyttöalue taitaa nykyään olla robottiajoneuvoille tarvittavat kartat, joihin aineistossamme on hyvä pohja myös tarkkuusvaatimusten osalta. Loppujen lopuksi tiesuunnittelun lähtöaineiston tarkkuusvaatimukset ovat selkeästi tiukemmat kuin HD-karttojen.

Uusi RIEGL VMX-2HA liikkuva laserskannausjärjestelmä

Kevään tullen on aika tutustua hieman tarkemmin RIEGL VMX- mobiiliskannerisarjan, järjestyksessä jo neljänteen uutuuteen, tuotemerkinnältään RIEGL VMX-2HA. VMX-sarjan ensimmäinen kompakti mobiililaitteisto VMX-250 julkaistiin muuten jo tasan 10 vuotta sitten. Sen jälkeen RIEGL VMX-sarjan kehitys jatkui saman konseptin mukaan kehitetyillä VMX-450 ja VMX-1HA malleilla.

RIEGL VMX-2HA on kokonaan uuden konseptin laitteisto, jossa kiteytyy laitevalmistajan 40 vuoden kokemus laserskannaustekniikan johtavana kehittäjänä samoin kuin myös uran uurtajan pitkä kokemus mobiililaserskannauksessa eli liikkuvassa kartoituksessa.

RIEGL VMX-2HA:ssa on on panostettu erityisesti kameroihin, joita on mahdollista liittää järjestelmään peräti 9 kappaletta 10 GigE -rajapinnoilla. Riegl tarjoaa kameroiksi kuvassa näkyviä 5, 9 ja/tai 12 Mpx kameroita, mutta laitteistoa hankkiessa voi aivan yhtä hyvin tyytyä vähäisempään resoluution valitsemalla esim. Ladybug5+ kameran yleiskuvasta varten. Vastaavasti järjestelmään voi liittää myös isompiakin kameroita, sillä liitäntöjen kuituoptiikka mahdollistaa nopean tiedonsiirron.

Rieglin uudet teollisuuskamerat ovat kennoiltaan herkempiä, mikä mahdollistaa paremman kuvanlaadun huonoissa valaistusolosuhteissa sekä nopeammat ajonopeudet kuvauksen aikana. Suhteessa laserskannaukseen kuvaus on näet monasti työtä rajoittava tekijä, sillä skannata voidaan mihin vuorokaudenaikaan tahansa vaikkapa täydellisessä pimeydessä. Valokuvaus vaatii aina kohteen valaistuksen jollain keinoin.

Yllä olevassa kuvassa on esimerkki takakameran resoluutiosta – pikselikoko kahden metrin etäisyydelta on 1,4 mm ja näitä kuvia voi ottaa useamman sekunnissa.

Itse skannausjärjestelmä on taattua Rieglin laatua sisältäen Rieglin uusimmat skannerit ja yhden kaupallisten markkinoiden parhaimmista GPS-inertianavigointijärjestelmistä.
Inertianavigointitekniikan hyödyntämisestä johtuen parempi laserskannaus- eli mittaustulos saadaan reippaalla ajovauhdilla.

Aineistojen prosessointi georeferointiin asti tehdään Rieglin omilla ohjelmilla, joihin on kehitetty hyvät rutiinit kahden keskenään kalibroidun skannerin aineiston prosessointiin. Luokittelua, vektorointia, mallinnusta ja koodausta voidaan tämän jälkeen tehdä esim. TerraSolidin ohjelmistoilla.

Tiesitkö muuten, että Rieglin VMX-mobiilikartoitusjärjestelmillä on mitattu jo muutama miljoona tiekilometri maailmalla? Isoimmilla asiakkailla esim. Kiinassa ja Yhdysvalloissa on jo useampia laite käytössään ja näillä mitataan kovaa vauhtia esimerkiksi robottiautojen tarvitsemia HD-karttoja. HD-karttaa varten tehtävä aineiston prosessointi eroaa suunnittelua varten tehtävästä vektoroinnista, sillä päämääränä ovat koneluettavat tiedostot.

Toivomme saavamme ensimmäisen RIEGL VMX-2HA laitteiston pian Suomeen, mutta sitä ennen tervetuloa meille tutustumaan aineistoihin ja kuulemaan lisää yksityiskohtia.

PS. Juuri tällaisille laitteistoille ja mittaustarkkuuksille tarvitsemme sekä valtakunnallista että kaupunkien ja kuntien ylläpitämää tarkkaa korkeus- ja tasokoordinaatisto runkopisteistöä, joiden rapistumisesta olemme eri yhteyksissä valitelleet koko talven.

Millaisiin tarkkuuksiin UAV-laserkeilauksella voidaan päästä?

Helsingin Kalasatamassa tehty kaupunkimallinnuskokeilu on valmis ja loppuraportti on ilmestynyt. Sen voi lukea linkistä.

Hankkeessa on muun muassa testattu monenmoisia ohjelmistoja eri tarkoituksiin ja ainakin tiedonsiirrot ja koordinaatisto-ongelmat näyttävät vaivaavat toimintaa edelleenkin – ihan kuin ne ovat vaivanneet alalla jo vuosikymmeniä.

Hankkeessa on on myös kokeiltu UAV-kuvausta ja UAV-laserskannausta kaupunkien täydennysmittauksiin, kun koko alueen ilmakuvausta tai ilmalaserskannausta ei koeta tarpeelliseksi joka vuonna.

Tässä vaiheessa lukija saattaa järkyttyä – ainakin me järkytyimme vuoden 2018 kokeen lopputuloksesta (s.59):

”Molempia pistepilviä vertailtiin kesällä 2017 mallinnettuun koko kaupungin kattavaan pistepilviaineistoon ja huomattiin, että laserkeilauspistepilvi sisältää virheitä korkeuksissa, kun taas kuvapistepilvi on hyvin täsmällinen aiemmin teetetyn aineiston korkeusarvojen kanssa. Aineistosta tuli kuitenkin käyttökelpoinen, kun pistepilvi korjattiin rekisteröimällä uudelleen käyttäen kuvapistepilveä referenssinä.”

Ottaen huomioon, että ilmalaserkeilaus alkoi syrjäyttää ilmakuvauksen 1990-luvulta alkaen tällaisessa kartoitustoiminnassa juuri paremman tarkkuutensa takia, niin aika mielenkiintoisesti ovat maailmankirjat taas kääntyneet.

Oikeasti myös UAV-laserskannauksella pystytään parempaan ja hyvän aineiston tarkkuus on selkeästi parempi kuin ilmakuvauksen, varsinkin peitteisellä alueella. Tästä löytyy myös ihan oikeaa tieteellistä tutkimusta, jollei myyjää halua uskoa.

Tervetuloa juttelemaan kanssamme aihepiiristä, jos sinulla on tarpeita tarkemman mittauksen suhteen. Toimitamme laitteistoja, mutta koulutamme sinut myös käyttämään laitteita ja saavuttamaan niillä vaadittuja mittaustuloksia.

Alla olevassa videossa esitellään Riegl miniVUX-1UAV integroituna DJI M600-droneen. Se kelpaa moneen tehtävään, mutta tarkkuudessa kuninkuusluokan skannereita ovat hiukan isommat ja painavammat VUX-sarjan skannerit, joiden alle vaaditaan myös isompi drone. VUX-skannerit sallivat myös isomman lentonopeuden, jos aika ja pinta-ala ovat rahaa.

RIEGL VZ-400i Sipoon kirkolla

Menneen viikon tapahtumiin lukeutuu nopea käväisy Sipoon keskiaikaisella kirkolla VZ-400i -laserskannerin kera. Laskujemme mukaan tämä on kolmas kerta, kun olemme skannanneet tätä kirkkoa lähes 20 vuoden aikajaksolla.

Noin 10 vuotta sitten tehty kirkon ullakon ja kattohirsien skannaus oli osa rakenteen tutkimusprojektia ja jäi ikuiseksi ajoiksi mieleen GPS-hölmöilyn takia. Olimme näet pyytäneet kunnalta lähtöpisteet aineiston koordinaatistolle ja seurantaan. Toden totta paikalta löytyi kolme pistettä, joiden avulla aloimme orientoida takymetriä. Ja eihän siitä tullut mitään isojen virheiden takia. Ihmettelyn jälkeen soitto kunnalle, josta saimme mittauksen tehneen yrityksen ja mittaajan nimen. Selvityksen jälkeen virheen syy oli ilmeinen, mutta hämmästelimme millä tietotaidolla RTK-GNSS:llä oli mitattu oikein seinäpiste. Kuka muutenkaan kuvittelee rakennuksen muutoksia tarkasteltavan RTK-GNSS-mittauksin?

Vuonna 2019 käytimme RTK-GNSS-mittausta suoraan skannerin asemointiin ja mittasimme muutaman aseman kirkon ulkopuolella. Tämän jälkeen siirryimme kirkkosaliin, jolloin saimme mitattua katon holvit alapuolelta. Mittauksen aikana VZ-400i:n sisäinen prosessointitietokone jauhoi mittauksia niin, että mittaustyön loputtua myös aineistot oli rekisteröity yhteen ja koordinaatistoon. Mittaukseen ja georeferoidun pistepilven luomiseen kului 1 tunti.

Tämän jälkeen aineisto siirrettiin tietokoneelle ja sitä tarkasteltiin paikan päällä RiScan Pro -ohjelmassa sekä RiPANO-projektina.

Kuvassa näkyy ulkopuolelta skannattuja aineistoja reflektanssiarvolla värjättynä. Reflektanssi eli pinnan heijastuominaisuudet auttaa pinnan materiaalien kartoituksessa joskus paremmin kuin valokuva. Tässä projektissa julkisivun kivet olisi helppo piirtää suoraan pistepilviortokuvasta.

Sisä- ja ulkomittauksia voi tarkastella yhdessä eri tavoin. Tässä tapauksessa kirkon etuosasta on tehty kapeita profiileja 1 metrin välein, jolloin esimerkiksi kirkkosalin holvikaton monimuotoisuus alkaa selvästi näkyä. Kun aineistot on rekisteröity hyvin yhteen, niin seinien paksuudet ja muut yksityiskohdat paljastuvat hienosti.

Ylempänä viistosta nähdyt leikkaukset nähdään seuraavaksi edestä katsottuna. Tästä näkymästä selviää, miten sisätilan lattia on alempana kuin ulkopuolen maanpinta. Katon etelälape (kuvassa oikealla) paljastaa myös käyryytensä eli tilanne ei ole viimeisen 10 vuoden aikana pahemmin muuttunut. Voimakkaassa auringonpaisteessa katto on käyristynyt huomattavasti enemmän kuin pohjoispuolen vastinkappale.

Viimeiseksi voimme tarkastella sisäpuolen aineistoa RiPANO-ohjelman sisällä. Nyt pistepilvi on värjätty RGB-kameran kuvalla, jolloin rakennus hahmottuu katsojalle tutumpana näkymänä. Kuvauksessa laadukasta järjestelmäkameraa ei voita laadullisesti oikein mikään – varsinkaan skannereihin integroidut pienet kamerat. Meillä oli käytössä Nikon D810 Nikkorin laatuoptiikalla.

Riegl VQ-1560i toiminnassa!

Maailmaa kartoitetaan koko ajan maastossa, lentokoneesta ja satelliiteista, mutta millaista itse toiminta on? Videossa pääset lentokoneen kyytiin aineiston keruuvaiheeseen ja näet miten Floridassa käytetään Riegl VQ-1560i -laserkeilausjärjestelmää tulvamallien tuottamiseen.

Suomessa toimivat konsultit käyttävät myös tätä keilainta osassa tehtävissään ja Viron maamittauslaitos kartoittaa Viroa samalla laitteistolla. Tänä vuonna on muuten vuorossa Etelä-Viron mittaus. Maa muuttuu, joten Virossa kartoitetaan maa alueittain kolmen vuoden kierrolla.

Laserskanneri lämpökameralla

Edustamamme Riegl Laser Measurement Systems esitteli vuoden 2018 Intergeossa niin paljon tuoteuutisia, ettemme ole edelleenkään kertoneet niistä kaikista. Vähemmälle huomiolle on jäänyt muun muassa VZ-400i/VZ-2000i -maalaserkeilaimen ja Infratec VarioCAM -lämpökameran integrointi.

Riegl on aikaisemmin yhdistänyt skannereihin muun muassa Flirin lämpökameroita, mutta käytännön syistä sarjatuotantoon on päätetty ottaa staattiseen mittaukseen soveltuva VarioCAM HD head 900 malli. Lämpökameroita on tyypillisesti yhdistetty ilmalaserskannereihin, mutta sovelluksen niin vaatiessa myös maalaserkeilaimet ovat kelpo alustoja lämpökameralle.

Skannaukset ja kuvaukset voidaan luonnollisesti tehdä myös erikseen, mutta Rieglin integrointi mahdollistaa kuvan saamisen suoraan koordinaatistoon. Sijainnin lisäksi myös suunta ja kulmat ovat oikein, jolloin tarpeen mukaan voidaan esimerkiksi värjätä pistepilvi lämpökameran tarjoamalla arvolla.

Esitteen kuvassa näemme rakennuksen julkisivun pistepilvi värjättynä harmaan sävyin hyödyntäen Rieglin reflektanssiarvoa (=etäisyyskalibroitu intensiteetti). Refletanssi kertoo pinnan materiaalin heijastusominaisuuksista Oikealla näemme saman aineiston, mutta tällä kertaa lämpökameran tuottamin tuloksin värjättynä. Visualisointitapaa voi vaihtaa lennossa Rieglin RiScan Pro -ohjelmassa.

Kun pistepilvi värjätään kameran tuottamilla arvoilla, niin jokaisella pistepilven XYX-pisteellä on olemassa lämpötila-arvo. Lämpötila kuten myös muut pisteen ominaisuudet ovat nähtävissä RiScan Pro -ohjelman sisällä tai ne voidaan myös viedä ulos ohjelmasta muihin ohjelmistoihin.

Kerromme mielellämme lisää joten ole yhteyksissä!

PS. Jos Kulosaari on liian kaukana, niin tule 14. maaliskuuta Lapin Mittauspäiville, jossa Tauno Suominen pitää esityksen runkomittauksesta ja keskustelu jatkuu.

PS2. Seuraavaksi työn alla on hyperspektrikameran sarjatuotantomuotoinen integrointi staattiseen ja UAV-laserskanneriin.

Laatu ja mittaushavaintojen ”parantaminen”

Näin sydäntalvella on aikaa miettiä laatuasioita, kun lumipeite estää monen maastokohteen mittauksen. Laatu on nyt tapetilla alalla kuin alalla, mistä syystä MIKESin entinen ylijohtaja Timo Hirvi kommentoi myös laadun tilaa Suomessa (HS maksumuuri). Hän kertoi muun muassa Suomen jääneen jumbosijalle ASQ-laatuorganisaation edellisessä kansainvälisessä laatuvertailussa vuonna 2016 ja epäilee ”suomalaisen laadun” olevan pääosin harhaa. Ainakin niissä tapauksissa, jossa hinta on hankinnan määräävin tekijä. Hän toteaa myös: ” Hyvä laatu ei ole itsestäänselvyys. Kysymys on ammattitaidosta, laatuun vaikuttavien asioiden ymmärtämisestä ja moraalista. ”

Meilläkin mittauksen ja koko mittausprosessin laatuasiat ovat säännöllisesti keskusteluissa uusien ja vanhojen tapausten myötä. Nostamme tässä esille muutaman meillä keskustellun aihepiirin, jotka ovat sinänsä vain pieni iso isommassa kokonaisuudessa, mutta toisaalta niitä perusosia, joista isoa kokonaisuutta lähdetään rakentamaan.

1) Runkomittauskeskusteluun liittyen keskustelimme geodesian professori Matti Martikaisen tasoituslaskuluennoista, joilla aikoinaan kävi hyvin selväksi, ettei tasoituslaskennalla paranneta virheitä eli toisin sanoen laskennan pohjana käytettäviä havaintoja. Mittausta tehdessä huonoja havaintoja ei siis parannella tasoittamalla ja virheen suuruus on arvioitava ennen tasoituksen tekemistä. Itse tasoitus on lähinnä tyylittelyä. Jos kokonaisvirhe (epävarmuus) on käyttötarkoitusta ajatellen liian suuri, niin havainnot on mitattava uudestaan. Martikainen taisi korostaa aihetta sen takia, että mittauksen kentältä alkoi korkeakoulullekin valua tietoa tulosten ”parantamisesta”.

2) Maassa tai ilmassa tehtävät mobiililasermittaukset ovat olleet jatkuvan keskustelun kohteemme viime vuosina. Geodesian perussäännöt pätevät hyvin myös laserkeilaushavaintoihin tai oikeastaan jo prosessoinnin alkuvaiheessa tehtävään ajo-/lentolinjan prosessointiin. Jos se ei onnistu mittaustyössä vaaditulla laatutasolla, niin on aivan turhaa yrittää parantaa lopputulosta laserlinjojen mätsäyksellä. Itse asiassa lento-/ajolinjojen mätsäys on tarpeeton toimenpide, jos laitteet ovat kunnolliset ja niitä käytetään oikein. Samoin kuin tasoituslaskennassa, virheanalyysi tehdään ennen mätsäystä, jotta ymmärretään lopputuloksen laatu tarkkuuden osalta eli mätsäys on vain hienosäätöä.

Toisin sanottuna jos aineistoissa on ”paljon mätsättävää”, niin silloin ne on oletettavasti tuotettu huonotasoisilla tai huonosti käytetyillä mittauslaitteilla. Esimerkiksi Rieglin laaduikkaimilla laitteistoilla trajektorien pitää olla maksimissaan vain parin sentin etäisyydellä toisistaan ennen mätsäystä, jos aiotaan saavuttaa moneen suunnittelutehtävään tarvittava mittaustarkkuus. Tällainen lopputulos erityyppisissä olosuhteissa vaatii kuitenkin työn huolellisen suunnittelun ja toteutuksen.

Jos esitellään kuinka hyvin jokin ohjelma murjoo paikalleen kaikki pahastikin harittavat linjat tai parantaa huonojen havaintojen laatua huomattavast, niin tällöin hälytyskellojen pitäisi soida mittauskoulutuksen saaneen ihmisen päässä. Pahasti harhailevatkin linjat voidaan ohjelmallisesti mätsätä yhteen, mutta missä pisteet oikeasti sijaitsevat onkin erinomainen kysymys. Jos laskennassa käytetään kontrollipisteitä, niin niiden virheistä ei myöskään voi päätellä mitään muuta kuin ohjelmankehittäjän taito minimoida virhe kontrollin kohdalla. Mittausaineistojen virheen suuruus arvioidaan siis ennen mätsäystä.

Koska vallitseva uskonkappale kertoo softalla ja tekoälyllä parannettavan kaiken, niin myös mittausalan viimeaikainen ohjelmistokehitys tuntuu keskittyvän aineistojen kaunisteluun oikean laskennan kehittämisen sijaan. Onhan se pistepilvienkin kohdalla ihan selvä asia, että mitä kauniimpi aineisto niin sen parempi se on myös geometriselta tarkkuudeltaan. Paitsi ettei ole.

Robotiikan puolelta tulleita SLAM-tekniikoita (joissa tyypillisesti kaikki eri sensorien tuottamat havainnot prosessoidaan yhdessä prosessissa), koskevat muuten käytännössä aivan samanlaiset periaatteet.

3) Ns. tekoälyalgoritmit mittauksessa. Laatuun liittyen olisi syytä herättää myös keskustelua uusien tekoälyalgoritmien käytöstä kaikenlaisten mittaushavaintojen laskennassa. Käytännössä murskaamme uusilla algoritmeillä vain entistä suurempia aineistoja. Kuten jo muiltakin aloilta tiedetään, niin tässä kehityksen vaiheessa kannattaa tietää aika tarkalleen mitä tekoäly tekee ettei tapahdu kummia. Nykymaailmassa tarvitsee siis muun muassa tietää, millaisilla aineistoilla ja periaatteilla algoritmia on koulutettu. Tätä aihepiiriä on käsitellyt hieman muun muussa Rieglin tuotekehitysjohtaja Andreas Ullrich artikkelissaan ”Noisy LIDAR point clouds: impact on information extraction in high-precision LIDAR surveying”. viitaten Nvidian karismaattinen perustajan Jen-Hsun Huangin esitykseen vuonna 2017. Huang näytti loistavia lopputuloksia kuvista tehdyn mallin visuaalisessa parantamisessa, mutta mikä on geometrinen todellisuus parantamisen jälkeen? Se tuskin edes kiinnostaa Huangia, koska hänen työnsä käyttötarkoitus on erilainen.

Kaiken kaikkiaan interneistä löytyy nykyisin lukuisia artikkeleita vastaavasta työstä, kuten tämä ETH:sta tuleva tutkimus kohinaisten ja harvojen pistepilvien muuntamisesta siloisiksi pintamalleiksi syvien neuroverkkojen avulla. Voimmeko luottaa näiden algoritmien toimimiseen esimerkiksi maaston mallintamisessa? Tätä kirjoittaessa emme tyypillisesti voi, joten riskien hallinnassa ja laadun valvonnassa on parasta ottaa käyttöön lääketutkimuksen alaltakin tuttu varovaisuusperiaate.

Tässä tutkimuksessa mittauskohde on ihmisen naama, mutta monasti tutkimuskohteina käytetään myös museoesineitä. Koska museoesineiden virtuaalimallit eivät ole vain visualisoinnin vaan usein myös esinetutkimuksen kohde, niin on hyvä kysyä mitä iloa huonosti mitatusta kohteesta on oikeasti niiden tutkimuksellisessa dokumentoinnissa?

Tutkimusta ja kehitystä huonojen aineistojen parantamiseksi on valtavan paljon ja valitettavasti loppukäyttäjä on useimmiten eniten vaatimassa näitä funktioita aineistoilleen. Tämän todellisuuden huomaa erityisen selkeästi avointen foruminen keskusteluista, jossa ohjelmistokehittäjille lähetään mitä hurjemman näköisiä aineistoja. Siloittelun jälkeen ne tuntuvat kelpaavan vaikkapa tiemittauksen tarpeisiin – mittaustarkkuuksiin fiksu ohjelmistokehittäjä ei kuitenkaan ota kantaa. Oletettavasti moni tilaaja maailmalla ei tee kovin ihmeellistä laadunvalvontaa tilaamilleen tuotteille, jos perunapellosta siloitellut tienpinnat kelpaavat lopputuotteiksi.

Käytännössä on selvää, että uusin aalto tekoälyalgoritmien kehittämisessä ja käyttöönotossa virittää myös pohjaa laatukirjojen ja standardien päivittämieen.

Runkomittaukset ja mittausperusta

Viime vuosina, koko ajan voimistuen, olemme saaneet jatkuvasti signaaleja runkomittausten tekemisen ja tarkoituksen tietotaidon heikkenemisestä. Pitkään alalla toimineina tuntuu suorastaan hämmentävältä, miten nopeasti käytännön rautainen tietotaito voi kadota.

Syy ilmiöön lienee pääosin RTK-GNSS-mittauksen kasvussa niin, että sillä on korvattu paljon muilla mittaustekniikoilla tehtyjä mittauksia. Samalla isoja, neitseelliseen maastoon sijoittuvia isoja infrahankkeita on ollut huomattavasti menneitä vuosikymmeniä vähemmän. Nyt on pitkästä aikaa suunnitteilla lähes 100 km pituinen Espoo – Salo -oikorata. Useampi iso ratahanke kuten Tampereen raitiotie ja pääkaupunkiseudun raidejokeri sijoittuvat puolestaan olemassa olevaan kaupunkiympäristöön, jossa on helppo liikkua, mutta luonnollisesti näissäkin projekteissa tarvitaan oma projektikohtainen mittausperusta taso- ja korkeuskiintopisteineen.

Valtakunnallista kiintopisteverkkoa, joihin rakennusprojektien mittausperusta siis ohjeiden mukaan sidotaan, pitää yllä Maanmittauslaitos. Tämän lisäksi kunnilla on oma alempien pisteiden kiintopisterekisterinsä, joka mittausmenetelmien muuttuessa näyttää erityisesti rapistuneen. Eikä ole Maanmittauslaitoksen alemman luokan pisteistössä hurraamista – pisteitä katoaa jatkuvasti eli ylläpito maksaa rahaa ja vie aikaa. Kuntien mittausosastojen kontolla oleva peruskartan ylläpito ja päivittäminen on tarkkuusvaatimuksiltaan sen verran löperöä tavaraa eli GIS-paikkatietoa, että tehtävä onnistuu RTK-GNSS-mittauksilla. Sama pätee kaupunkimallin vaatimuksiin. Koska maksajaa kiintöpisteverkolle ei siis ole, niin sen ylläpito ja merkitys on monessa kaupungissa jo unohdettu.

Tässä vaiheessa ongelmat astuvat mukaan kuvioon, sillä kuntien alueilla tehtävät rakennusprojektit tarvitsevat paikalliseen luotettavaan pisteverkkoon sidotun mittausperustan. Kaikki rakentamisen laatu- ja tarkkuusvaatimukset mittausten osalta on määritelty valtakunnallisen verkon suhteen, jolloin voidaan edes tarkistaa tulokset. Riidat syntyvät heti kun eri osapuolet tekevät mittauksensa joko omassa mittausperustassa (esimerkiksi eri puolilta kauempaa tuodut kiintopisteet) tai eivät käytä ollenkaan paikallista vaan globaalia mittausperustaa kuten RTK-GNSS-mittauksissa voidaan helposti tehdä. Sitten joka puolella ihmetellään esimerkiksi 5 -10 cm pykäliä teissä, joita katurakenteiden ja päällysteiden tekijät pyrkivät luonnollistesti tasoittamaan ”silmällä”. Aina he eivät kykene siihen. Muun muassa Helsingin uusissa kaupunginosissa on aikamoisia rakenteiden korkeusongelmia.

Huomioitavaa on, ettei meillä ole globaalin mittausperustan laadunvalvontajärjestelmää vaan se perustuu hierarkkiseen ylemmästä pisteistöstä alempaan määriteltyyn paikalliseen/ valtakunnalliseen järjestelmään.

Huolestuttavaa ei ole pelkästään toteuttajien tietotaidon katoaminen vaan myös tilaajien kasvava ymmärtämättömyys asiasta. Ennen tilaajillakin oli sentään tiukat laatujärjestelmänsä, joilla valvottiin toteutusta, mutta nyt myös tilaajienkin laadunvarmistus tuntuu olevan osin katoavaa kansanperinnettä.

Liikenneviraston ohjeistus aihepiiristä, sekä mittausohje että toimintaohje, on hyvin ajan tasalla tarvittavista vaatimuksista. Kuitenkin koulutuksellinen ja käytännön tietämättömyys aihepiiristä on kasvavassa määrin retuperällä. Tarttis tehrä jotain?

Jos aihepiiri kiinnostaa, niin tervetuloa Maanmittauspäiville 27.3. klo 14:30 kuuntelemaan DI Tauno Suominen esitystä ”Runkomittaukset – katoavaa kansanperinnettäkö”. Tauno on on ollut mukana sadoissa infrahankkeissa ja toiminut primus motorina ilmalaserkeilauksen käyttöönotossa Suomessa 20 vuotta sitten. Hän on TVH:n mies ja ylpeä siitä.

Luonnollisesti tarjoamme myös aihepiirin käytännön koulutusta, joten ole yhteydessä jos tarvitset tietoa.

Lisää luettavaa:

https://julkaisut.liikennevirasto.fi/pdf8/lo_2017-18_maastotiedot_mittausohje_web.pdf

https://julkaisut.liikennevirasto.fi/pdf8/lo_2017-19_maastotietojen_hankinta_web.pdf

1998 – 2018. 20 vuotta operatiivista ilmalaserkeilausta Suomessa

Ennen kuin vuosi vaihtuu ja suuntaamme katseet taas tulevaan, niin tehdäänpä pieni katsaus ajassa taaksepäin. 20 vuotta sitten Suomessa koettiin sellainen disruptiivinen muutos, jollaista poliitikot ja erilaiset visionäärit koko ajan haikailevat. Koska muutoksen aikaansaanutta organisaatiota eli Tielaitosta ei enää sellaisenaan ole, niin muistellaanpa hieman mitä tapahtui.

Valtatie 1:n uusi linjaus välille Lohja-Suomusjärvi oli päätetty rakentaa ja aikataulu oli tavanomaisen tiukka. Maastomalli piti luonnollisesti mitata suunnittelua varten ja silloinen Tielaitos ryhtyi toimeen heti päätöksen tultua. Kentällä hyöri 30 mittausryhmää, mutta työ sujui hitaasti. Paikan päällä todettiin maaston olevan todellakin niin hankalaa jyrkkine kallioseinämineen, tiheine pusikoineen ja suoalueineen, että mittausryhmät olisi pitänyt tuplata aikataulussa pysymiseen.

Mittausryhminen tuplaamisen sijaan saatiin lupa ja kunnollinen rahoitus T&K-projektiin ilmalaserkeilauksen kehittämiseksi infrasuunnittelun tarpeisiin. Itse mittaustekniikka oli tuohon aikaan pääosin vielä tutkimuksellisella tasolla ja globaalisti kaupallisessa käytössä olevat laitteistot pystyi laskemaan kymmenella sormella. Kunnollisia ohjelmistoja aineistojen käsittelyyn ei ollut.

Tielaitoksen konsultointiyksikössä tuolloin toiminut nykyinen kouluttajamme ja projektien vetäjämme DI Tauno Suominen oli käynyt Ruotsissa tutustumassa Saab Survey AB:n kehittämään TopEye-laitteistoon ja teknologiaan vuonna 1997 ja syksyllä 1998 tehtiin Tielaitoksen ensimmäinen keilaus Lohja-Suomusjärvi osuudella. Iso osa työstä jouduttiin uusimaan keväällä 1999, koska ensimmäisellä kerralla lentolinjat suunniteltiin perinteisen ilmakuvauksen opein. Oppimisläksynä oli, että uudet teknologiat vaativat koko prosessin uudelleen suunnittelun kun niistä halutaan hyötyä kunnolla.

Tauno on kirjoittanut jo aikoinaan useita artikkeleita, joissa kuvataan alkuaikojen tapahtumia. Jos aihepiiri kiinnostaa laajemmin, niin Valtatie 1:n tapahtumia kuvataan tässä Maankäytön artikkelissa ja Kerava-Lahti oikoradan rakentaminen mittauksen kannalta kerrotaan täällä.

Tauno allekirjoittaa vielä edelleenkin kirjoittamansa lukuunottamatta ilmakuvia sisältävien hybridiaineistojen tarvetta. Moderneilla keilaimilla tuotettu tiheä pistipilviaineisto ei tarvitse kuva-aineistoja rinnalleen tulkintaa ja mallinnusta varten ja mahdolliset ortokuvat voi tehdä suoraan pistepilvistä. Kustannuksellisesti kyseessä on suuri säästö menneeseen verrattuna, sillä ilmakuvaus tehdään useimmiten erillisillä lennoilla ja sääikkuna onnistuneeseen kuvaukseen on huomattavasti kapeampi kuin laserkeilauksessa.

Mainittakoon vielä tämän saman tuotekehitysprojektin aikaansaama TerraSolid Oy:n pistepilviaineistojen ohjelmistokehitys, jolla yhtiö onkin onnistuneesti valloittanut maailmaa. Tekniikan kehityksen varhaisessa vaiheessa suoraan tarpeeseen toteutettu ohjelmistokehitys
yhdessä asiakkaan kanssa antoi TerraSolidille avainaseman myös globaaleilla markkinoilla.